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INTRODUCTION
Free boundary problems deal with systems of partial
differential equations, where the domain boundaries
are apriori unknown. Due to this special characteristic,
it is challenging to solve the free boundary problems
either theoretically or numerically. We develop a novel
approach for solving a modified Hele-Shaw problem
based on boundary integral method and neural net-
work discretization. The existence of the numerical
solution under this new scheme is established theoret-
ically. We also numerically verify this approach by
computing the symmetry-breaking solutions which are
guided by the bifurcation analysis near the radially-
symmetric branch. Moreover, we further verify the
capability of this approach by computing some non-
radially symmetric solutions which are not character-
ized by any theorems.

THE MODEL PROBLEM
We need to solve both the unknown function σ and the
unknown domain Ω of the following system:

−∆σ =−σ in Ω,
σ = µ +κ on ∂Ω,
∂σ

∂nnn = β on ∂Ω,
(1)

where µ and β are constants, and κ denotes the mean
curvature of the domain boundary ∂Ω.

THEORETICAL RESULTS
• System (1) admits a unique radially symmetric solu-
tion (σS(r),RS).
• For each n ≥ 2, there exists a µn such that at each
µ = µn, a symmetry-breaking solution branch bifur-
cates from the radially symmetric solution.
• Furthermore, the free boundary of the symmetry-
breaking bifurcation solution is

r = RS + ε cos(nθ) with |ε| � 1.

BOUNDARY INTEGRAL METHOD
• Denote G1(xxx,yyy) by the fundamental solution of
(−∆+1)σ = 0. In 2D, G1(xxx,yyy) = i

4 H(1)
0 (i|xxx− yyy|).

• Since G′1(r)=O(r−1) is strongly singular, we further

introduce Q(r) = 1
r

(
G′1(r)+

1
2πr

)
.

• Using Green’s Theorem, and substituting into the
boundary conditions from (1), we derive, for each
xxx ∈ ∂Ω,∫

∂Ω

[
βG1(xxx,yyy)−

(
(µ +κ(yyy))Q(|xxx− yyy|)

− κ(yyy)−κ(xxx)
2π|xxx− yyy|2

)
(yyy− xxx) ·nnny

]
dSy = 0.

(2)

• At the expense of a singular kernel, the advantage
of applying BIM is that the dimensionality of the
problem is reduced by one

• In 1D, we write everything in polar coordinates, and
denote the boundary points xxx and yyy in (2) as:

xxx = (R(θ̂)cos(θ̂),R(θ̂)sin(θ̂));
yyy = (R(θ)cos(θ),R(θ)sin(θ)).

• Assume the unknown free boundary is ∂Ω : r =
R(θ), and denote D[R] = |xxx− yyy|.
• Based on (2), if we define an operator L by

L [R](θ̂),
∫

∂Ω

[
βG1(D[R])−

(
(µ +κ(yyy))Q(D[R])

− κ(yyy)−κ(xxx)
2π(D[R])2

)
(yyy− xxx) ·nnny

]
dSy,

then we have Lτ [R](θ̂)≡ 0 for each θ̂ ∈ [0,2π].
• Since the kernel is singular, we introduce Dτ [R] =√
(D[R])2 + τ2, and define Lτ by

Lτ [R](θ̂),
∫

∂Ω

[
βG1(Dτ [R])−

(
(µ +κ(yyy))Q(Dτ [R])

− κ(yyy)−κ(xxx)
2π(Dτ [R])2

)
(yyy− xxx) ·nnny

]
dSy.

• Lτ [R]→ L [R] when τ → 0, and we have a non-
singular kernel when τ > 0.
• If r = R(θ) is the unknown free boundary, then
Lτ [R](θ̂)≈ 0 for each θ̂ ∈ [0,2π].

NEURAL NETWORKS
• Approximate R(θ) by a single hidden layer neural
network (denote the parameter set by X ):

R(θ)≈
N

∑
i=1

aiΨ(biθ + ci)+d , ρ(θ ;X ).

• Loss function F(X , θ̂θθ) , 1
m ∑

m
i=1

(
Lτ [ρ](θ̂i)

)2
+

∑
2
α=0

(
Dα
(
ρ(0;X )−ρ(2π;X )

))2
.

•X is obtained via minX J(X ), E
θ̂θθ

[
F(X , θ̂θθ)

]
.

ALGORITHM
A SGD method to compute X :

1: Choose an initial guess X1
2: for k = 1,2, · · · do
3: Generate m random points θ̂θθ k = (θ̂k,i)

m
i=1;

4: Calculate loss function at randomly sampled
points F(Xk, θ̂θθ k);

5: Compute G(Xk, θ̂θθ k) = ∇X F(Xk, θ̂k);
6: Set Xk+1 = Xk−αnG(Xk, θ̂θθ k);
7: end for

SIMULATION RESULTS
1. Verification of the scheme near bifurcation points

(a) n = 2 bifurcation, µ = 14.6. (b) n = 3 bifurcation, µ = 28.6. (c) n = 4 bifurcation, µ = 47.0. (d) n = 5 bifurcation, µ = 70.0.
Figure 1: Training loss.

(a) n = 2 bifurcation, µ = 14.6. (b) n = 3 bifurcation, µ = 28.6. (c) n = 4 bifurcation, µ = 47.0. (d) n = 5 bifurcation, µ = 70.0.
Figure 2: Contour plot of nonradially symmetric solutions in different bifurcation branches.

2. Other non-radially symmetric solutions

(a) Training loss. (b) Contour plot.
Figure 3: Non-radially symmetric solution with 2 fingers.

(a) Training loss. (b) Contour plot.
Figure 4: Non-radially symmetric solution with 4 fingers.
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