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Abstract
We focus on a nonparametric density estimator formulated by the kernel embedding of distributions. In particular, we

consider the “Mercer-type” kernels constructed based on the classical orthogonal bases defined on non-compact domains,
such as the Hermite and Laguerre polynomials. While the resulting representation is analogous to Polynomial Chaos Expan-
sion (PCE), by studying the orthogonal polynomial approximation in the reproducing kernel Hilbert space (RKHS) setting,
we establish the uniform convergence of the estimator. More importantly, the RKHS formulation allows one to systemati-
cally address a practical question of identifying the PCE basis for a consistent estimation through the decay property of the
target functions quantified using the available data. Numerically, we apply our density estimator to data-driven modeling in
recovering the linear response statistics of an unknown underlying dynamics. The poster is based on the recent works [4, 5]
with my advisor Prof. John Harlim and co-advisor Prof. Xiantao Li.

The universality of RKHS
Definition 1. Let X be a non-empty set and H be a R-Hilbert function space over X , i.e., a R-Hilbert space
of functions that maps X to R. ThenH is called an RKHS with kernel k, if k(·, x) ∈ H, ∀x ∈ X , and we have
the reproducing property

f (x) = 〈f (·), k(·, x)〉H (1)

holds for all f ∈ H and all x ∈ X . In particular, we call such k(·, ·) a reproducing kernel ofH.

There is a one-to-one correspondence between the RKHS and kernel. The RKHS has the remarkable prop-
erty that the norm convergence implies the pointwise convergence. More precisely, consider fn → f in H,
that is, ‖fn − f‖H → 0 as n→∞. Then, ∀x ∈ X , we have

|(fn − f )(x)| = |〈fn − f, k(·, x)〉H| ≤ ‖fn − f‖H ‖k(·, x)‖H → 0, n→∞. (2)

Eq. (2) suggests that if ‖k(·, x)‖H is bounded uniformly in x, we will have the uniform convergence of fn.
Lemma 2. Let X be a topological space and k be a kernel on X with RKHS H. If k is bounded in the sense
that

‖k‖∞ := sup
x∈X

√
k(x, x) <∞.

and k(·, x) : X → R is continuous ∀x ∈ X , thenH ⊂ Cb(X) (space of bounded and continuous functions on
X), and the inclusion id : H → Cb(X) is continuous with ‖id : H → Cb(X)‖ = ‖k‖∞.

As a subspace of Cb(X), it is natural to ask whether the RKHS H is dense in the Banach space Cb(X)
equipped with the uniform norm. In this poster, we are interested in the case where X is non-compact, e.g.,
X = Rd, and the target f is a continuous density function which vanishes at infinity. For a locally compact
Hausdorff (LCH) spaceX , let C0(X) denote the space of all continuous functions onX that vanish at infinity.
Definition 3. (c0-universal) Let X be an LCH space and let k be a bounded kernel on X × X and
k(·, x) ∈ C0(X), ∀x ∈ X . The kernel k is said to be c0-universal if the RKHS, H, induced by k is dense
in C0(X) with respect to the uniform norm.

Notice ∀f ∈ H,

|f (x)| = |〈f, k(·, x)〉H| ≤ ‖f‖H ‖k(·, x)‖H = ‖f‖H k
1
2(x, x), ∀x ∈ X, (3)

that is, functions in the RKHS have the same decay rate as k
1
2(x, x). For general C0-function, we may use a

weight function q to characterize its decay rate. For example, take X = Rd, and q ∝ exp(−θ‖x‖2) (θ > 0),
then the functions in C0(Rd, q−1) are continuous with a Gaussian decay rate.
Lemma 4. (weighted c0-universal) If the kernel k satisfies k(·, x) ∈ C0(X, q−1), ∀x ∈ X . Then, k̃(x, y) :=
q−1(x)k(x, y)q−1(y) defines a kernel on X , and the RKHSH induced by k is dense in C0(X, q−1) if and only
if the kernel k̃ is c0-universal.

From orthogonal polynomials to RKHS
Let {p~m(x)} be the orthonormal polynomial in L2(Rd,W ), we define the “Mercer-type” kernel,

kβ(x,y) :=
∑
~m≥0

λ~mp~m(x)p~m(y)W β(x)W β(y), λ~m :=

d∏
i=1

λmi, (4)

for β ≥ 1
2. Here, λn is a monotonically decreasing sequence, which can be interpreted as the eigenvalues with

eigenfunctions
{

Ψβ,~m := p~mW
β
}

.

Proposition 5. For any fixed β ≥ 1
2, we have the following results.

1. For any sequence
{
f̂~m

}
∈ `2 satisfying ∑

~m≥0

f̂2
~m

λ~m
<∞, (5)

where λ~m is defined in (4), the sequence of functions

fn :=
∑
‖~m‖1≤n

f̂~mΨβ,~m, n ≥ 0,

converge uniformly inC0(Rd). Moreover, the limit, denoted as f∗, satisfies f∗ ∈ L2(Rd,W 1−2β)∩C0(Rd).
2. The function space

Hβ :=

f =
∑
~m≥0

f̂~mΨβ,~m

∣∣∣ ∑
~m≥0

f̂2
~m

λ~m
<∞

 , (6)

is a well-defined subspace of L2(Rd,W 1−2β) ∩ C0(Rd). Further, define the map 〈·, ·〉 : Hβ ×Hβ → R as

〈f, g〉 :=
∑
~m≥0

f̂~mĝ~m
λ~m

, f =
∑
~m≥0

f̂~mΨβ,~m, g =
∑
~m≥0

ĝ~mΨβ,~m ∈ Hβ.

Then 〈·, ·〉 defines an inner product, andHβ, equipped with the inner product 〈·, ·〉, is a Hilbert space.

3.Hβ is the RKHS with reproducing kernel kβ in (4).

Example. Let W be the d-dimensional standard Gaussian distribution, following (4), we define the kernel

kβ,ρ(x,y) :=
∑
~m≥0

ρ‖~m‖1Ψβ,~m(x)Ψβ,~m(y), ∀x,y ∈ Rd, Ψβ,~m = ψ~mW
β, (7)

where {ψn} are normalized Hermite polynomials with eigenvalues λn = ρn, ρ ∈ (0, 1). For this special case,
we do have an explicit expression for kβ,ρ. For example, when d = β = 1, the kernel k1,ρ in (7) is known as
the Mehler kernel with

k1,ρ(x, y) =

∞∑
m=0

ρmΨm(x)Ψm(y) =
1

2π
√

1− ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
. (8)

For β ∈ [12,∞) and ρ ∈ (0, 1), we will call the kernel kβ,ρ in (7) and the corresponding RKHS,Hβ,ρ, following
Proposition 5, the d-dimensional Mehler kernel and Mehler RKHS, respectively.

Corollary 6. (universality of the Mehler RKHS) Let

qβ,ρ(x) := exp

[
−
(

1

2(1 + ρ)
+
β − 1

2

)
‖x‖2

]
, x ∈ Rd, (9)

thenHβ,ρ is dense in C0

(
Rd, q−1

β,ρ

)
.

This means that one can approximate any continuous function that has Gaussian (or faster) decaying rate up
to any desirable accuracy using an estimator that belongs to the Mehler RKHS.

So far we have introduced a framework to construct RKHS as a subspace of L2(Rd,W 1−2β)∩C0(Rd). The
resulting RKHS extracts features of both L2(Rd,W 1−2β) and C0(Rd), e.g., the expansion formula

f =
∑
~m≥0

f̂~mΨβ,~m, f̂~m :=

∫
Rd
f (x)Ψβ,~m(x)W 1−2β(x) dx =

∫
Rd
f (x)p~m(x)W 1−β(x) dx, (10)

makes sense not only in L2(Rd,W 1−2β) but also pointwise. In practice, given data {Xn}Nn=1 sampled from
the target density f , we will choose a function inHβ with a finite sum, ‖~m‖1 ≤M,whereM � N , as an esti-
mator for f . While the choice ofM allows us to specify the theoretical “bias” or “approximation error”, thanks
to the orthogonal representation, the resulting hypothesis function is parametric and the evaluation of f on a
new x ∈ Rd amounts to evaluating

(M+d
M

)
components of

{
Ψβ,~m(x) | ‖~m‖1 ≤M

}
. This is computationally

much cheaper than evaluating f (x) = 〈f, k(·,x)〉H, with radial-type kernels, such as k (x,y) = h (‖x− y‖)
for some positive function h, since the computation of the inner product requires evaluating h (‖Xn − x‖),
for all n = 1, . . . , N .

Kernel embedding data-driven modeling
Assume the target d-dimensional density function f lives in the Mehler RKHS Hβ,ρ. We define the order-M
kernel embedding estimates as the order-M truncation of Eq. (10),

fM :=
∑

‖~m‖1≤M
f̂~mΨβ,~m. (11)

We should point out that, with this choice of basis representation, we arrive at a polynomial chaos approxima-
tion of f . But the convergence fM → f as M →∞ is valid in both L2(Rd,W 1−2β) and C0(Rd). In practice,
the integral in (11) can be approximated by a Monte-Carlo average, and we define the order-M empirical
kernel embedding estimate of f as

fM,N :=
∑

‖~m‖1≤M
f̂~m,NΨβ,~m, f̂~m,N :=

1

N

N∑
n=1

ψ~m(Xn)W 1−β(Xn), (12)

where {Xn}Nn=1 are sampled from the target density function f . For general density functions, we run statisti-
cal tests to identify the tail of the marginal distribution. Subsequently, we choose an appropriate RKHS basis
based on the tail information. Finally, we construct the basis using tensor product, and compute the empirical
kernel embedding estimates following (12).

In [5], we propose the following “semi-parametric” extended Langevin equation as an imperfect model to
recover the response statistics of an unknown underlying dynamics

ẋ = v,

v̇ = Λ∇x log (ρ̂(x))− Γv + σẆt.
(13)

By “semi-parametric”, we refer to the combination of linear parametric equation in the right-hand-side with
a “nonparametric” term that involves ρ̂(x) that is estimated by the kernel embedding approximation of the
marginal distribution of x at equilibrium.
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Figure 1: The prediction of the full response. The blue solid curves indicate the full response of the underlying dynamics. The red
dash curves are the full response from the imperfect model (13) based on the parameter estimates.
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