
DAGs with No Fears: A Closer Look at Continuous 

Optimization for Learning Bayesian Networks

Bayesian Networks via Continuous Optimization 1. Better Understanding of NOTEARS

Our Contributions

Theoretical understanding of continuous optimization framework, 

leading to significant algorithmic improvements

1. Better understanding of NOTEARS

2. Understanding of KKT optimality conditions for reformulation

3. KKT-search post-processing improves all tested algorithms

3. KKT-search Improves Existing Algorithms

With KKT-search: 

Consistent improvement across base algorithms and dimension 𝑑

Structural Hamming distance (SHD) with respect to true graph for different graph types and 𝑛 = 1000 samples
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>2X

reductions

state-of-the-art 

accuracy

Proposed Algorithms

1. Augmented Lagrangian with 𝐴 = 𝑊 (‘Abs’)

2. KKT-search to satisfy KKT conditions

Base algorithms: NOTEARS still best, Abs second
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– Acyclic solutions cannot satisfy 
KKT conditions

– Augmented Lagrangian algorithm 
cannot converge to acyclic 
solution even with high penalty

minimize 𝐹(𝑊)

subject to ℎ(𝑊 ∘𝑊) = 0

quadratic adjacency matrix 𝐴 = 𝑊 ∘𝑊

2. KKT Conditions for Reformulation
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minimize 𝐹(𝑊)

subject to ℎ( 𝑊 ) = 0

minimize 𝐹(𝑊)

subject to 𝑊𝑖𝑗 = 0, (𝑖, 𝑗) ∈ 𝒵

– KKT conditions are indeed 
necessary: Local minima must 
satisfy them

– If score 𝐹(𝑊) is convex, KKT 
conditions sufficient for local 
minimality, despite non-convexity 
of constraint

– Understanding of KKT conditions 
in terms of edge absence 
constraints: Collectively sufficient, 
individually necessary in 
preventing cycles

absolute adjacency matrix 𝐴 = 𝑊
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Given 𝑛 samples of 𝑋 ∈ ℝ𝑑, learn 

Bayesian network parametrized by 𝑊

Score-based learning:

NOTEARS [1]:

data
n

d

minimize score 𝐹(𝑊)

subject to 𝐺 𝑊 ∈ DAGs

minimize score 𝐹(𝑊)

subject to ℎ(𝐴) = 0

continuous,

differentiable

adjacency

matrix

combinatorial

NOTEARS [1]:   ℎ 𝐴 = tr 𝑒𝐴 − 𝑑

DAG-GNN [2]:   ℎ 𝐴 = tr (𝐼 + 𝐴/𝑑)𝑑 − 𝑑

Our generalization:

ℎ 𝐴 = tr 

𝑝=1

𝑑

𝑐𝑝𝐴
𝑝 𝑐𝑝 > 0

∇ℎ(𝐴) has a directed walk interpretation

General Class of Acyclicity Constraints

Adjacency matrix 𝐴:  
𝐴𝑖𝑗 > 0⟺ edge
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Assumption:  Each edge 

corresponds to one parameter 𝑊𝑖𝑗

e.g. generalized linear SEM
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