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Introduction

A Gaussian mixture model of r components consists of r Gaussian distributions,
N (µi,Σi) for i = 1, . . . , r, where µi ∈ Rd is the expectation (or mean) and Σi ∈
Rd×d is the covariance matrix. Each sample of the distribution is drawn from
one Gaussian component and the probability that a sample is drawn from the ith
Gaussian distribution is ωi > 0. The density function of the Gaussian mixture
model is the weighted sum of the r density functions of component Gaussian
distributions. Learning a Gaussian mixture model is to estimate parameters of the
model ωi, µi,Σi from given samples of the model. We proposed an algorithm[1]
to learn Gaussian mixture models by using tensor decompositions.

Fig. 1: Gaussian Mixture Model

Gaussian Mixture and Tensor Decompositions

Let x be the random variable of the d-dimensional Gaussian mixture model with
r components and parameters {(ωi, µi,Σi) : 1 ≤ i ≤ r}. When covariance
matrices Σi = diag

(
σ2
i1, . . . , σ

2
id

)
are all diagonal matrices, the third order moment

tensor M3 := E[x⊗ x⊗ x] can be written as

M3 =

k∑
i=1

ωiµi⊗ µi⊗ µi +

d∑
j=1

(
aj ⊗ ej ⊗ ej + ej ⊗ aj ⊗ ej + ej ⊗ ej ⊗ aj

)
, (1)

where aj :=
∑r
i=1 ωiσ

2
ijµi, j = 1, . . . , d. We are particularly interested in the

following cubic symmetric tensor

F :=

r∑
i=1

ωiµi ⊗ µi ⊗ µi. (2)

The entries of M3 and F are the same, when their labels i1, i2, i3 are distinct from
each other, i.e.,

(M3)i1i2i3 = (F)i1i2i3 for (i1, i2, i3) ∈ Ω,

where Ω := {(i1, i2, i3)|i1 6= i2 6= i3 6= i1} is the label set. The tensor M3 can be
estimated by samples, so partial entries (F)Ω can be obtained from M3. We aim
to find the decomposition of F from (F)Ω, i.e. we are looking for vectors p1, . . . , pr
such that

Fi1i2i3 =
(
p⊗3

1 + · · · + p⊗3
r

)
i1i2i3

, for all (i1, i2, i3) ∈ Ω. (3)

In the definition, F has the decomposition F =
∑r
i=1 ωiµi ⊗ µi ⊗ µi, which is

unique when r is small. Thus, the recovered decomposition can be used to esti-
mate ωi, µi of the Gaussian mixture model and then covariance matrices Σi can
be found by considering M3 −F .

Tensor Decompositions with Incomplete Entries

The tensor F is rewritten as

F = λ1

(
1
u1

)⊗3

+ · · · + λr

(
1
ur

)⊗3

, (4)

where λi = ωi(µi)
3
1 and ui = (µi)2:d/(µi)1 ∈ Cd−1. In the following, we discuss how to find the

decomposition of F from partial entries (F)Ω.

• When r ≤ d
2 − 1, there is a unique generating matrix G :=

(
G(k, ei + ej)

)
1≤k,i≤r<j≤d−1

of F such that
r∑
k=1

G(k, ei + ej)F0kt −Fijt = 0, t = 0, 1, . . . , d− 1, (5)

for all 1 ≤ i ≤ r < j ≤ d − 1 and 0 ≤ t ≤ d − 1. By choosing t ≥ r + 1, t 6= j, entries
F0kt,Fijt in the above equations are parts of (F)Ω and hence are known. Thus, the matrix
G can be found by solving the above linear equations.

• For l = r + 1, . . . , d− 1, it holds that

Nl(G)

(ui)1
...

(ui)r

 = (ui)l

(ui)1
...

(ui)r

 , where, Nl(G) =

G(1, e1 + el) · · · G(r, e1 + el)
... . . . ...

G(1, er + el) · · · G(r, er + el)

 .

The above equations illustrate that vectors (u1)1:r, . . . , (ur)1:r are common eigenvectors of
Nr+1, . . . , Nd−1 and (u1)l, . . . , (ur)l are corresponding eigenvalues of Nl. Thus, vectors
u1, . . . , ur can be recovered by finding common eigenvectors and corresponding eigenval-
ues of Nr+1, . . . , Nd−1. Finally, scalars λ1, . . . , λr are obtained by solving a linear system.

Theorem 1. Suppose the tensor F has the decomposition as in (4), where r ≤ d
2 − 1 and

{(ui)1:r}ri=1, {(ui)r+1:d−1}ri=1 are both linearly independent, then our algorithm with the input
(F)Ω must find the decomposition (4).

When we only have an estimation (F̂)Ω of (F)Ω, our algorithm with the input (F̂)Ω can still
produce a rank-r approximation of F .

Theorem 2. Suppose the tensor F = (p1)⊗3 + · · · + (pr)
⊗3 has rank r ≤ d

2 − 1 and satisfies
some conditions. Let F ≈ (p̂1)⊗3 + · · · + (p̂r)

⊗3 be the rank-r approximation produced by our
algorithm with the input (F̂)Ω. If the distance ε := ‖(F̂ − F)Ω‖ is small enough, then it holds

‖p̂i − pi‖ = O(ε),

up to a permutation of (p1, . . . , pr), where the constant in O(·) only depends on F .

Learning Diagonal Gaussian Mixture Models

For simplicity, we assume that moments M1 := E[x] and M3 := E[x⊗ x⊗ x] are given exactly.

• The decomposition of F can be recovered from (F)Ω = (M3)Ω by using incomplete tensor
decomposition. The recovered decomposition can be written as F =

∑r
i=1(pi)

⊗3, where
pi := 3

√
ωiµi. It holds that

M1 = ω1µ1 + · · · + ωrµr = ω
2/3
1 p1 + · · · + ω

2/3
r pr.

The scalars ω2/3
1 , . . . , ω

2/3
r can be found by solving the above linear system. Therefore,

weights ωi are obtained and the mean vectors µi are recovered by µi = pi/ 3
√
ωi.

• Define the tensor A such that

A := M3 −F =

d∑
j=1

(aj ⊗ ej ⊗ ej + ej ⊗ aj ⊗ ej + ej ⊗ ej ⊗ aj),

where aj =
r∑
i=1

ωiσ
2
ijµi. The above equations are linear systems in σ2

ij. Therefore, covari-

ance matrices Σi are obtained by solving those linear equations.

In practice, moments M1,M3 = can be estimated from samples and the partial tensor is given
by (F)Ω = (M3)Ω. In such case, our algorithm can still find good estimations of parameters.

Simulations

We perform classifications on synthetic data. Our algorithm is compared with the classi-
cal Expectation-Maximization (EM) algorithm under various dimensions and ranks.

Accuracy
d = 20 d = 30 d = 40

r = 3 r = 5 r = 7 r = 4 r = 8 r = 11 r = 6 r = 10 r = 15

Ours 0.9861 0.9740 0.9659 0.9965 0.9923 0.9895 0.9990 0.9981 0.9971

EM 0.9763 0.9400 0.9252 0.9684 0.9277 0.9219 0.9117 0.8931 0.9111

Accuracy
d = 50 d = 60

r = 7 r = 13 r = 18 r = 8 r = 15 r = 22

Ours 0.9997 0.9995 0.9993 0.9999 0.9998 0.9995

EM 0.8997 0.9073 0.9038 0.8874 0.8632 0.8929

Table 1: Classification accuracy on simulations

Texture Classification

Fig. 2: Textures

Every texture is divided into 256 subimages, among which 160 subimages are uses for
training and the remaining are used for testing. Our algorithm and EM algorithm are
used to fit the Gaussian mixture model to each texture. The classification accuracy on
test subimages is reported in the following table.

Accuracy Our Algorithm EM

Flowers.0001 0.8137 0.6315
Tile.0000 0.8219 0.7239

Paintings.11.0001 0.8047 0.7350
Grass.0001 0.9841 0.9068
Brick.0004 0.9406 0.8854
Fabric.0013 0.9220 0.9048
Bark.0000 0.5376 0.8413
Bark.0009 0.5107 0.7150

Table 2: Classification accuracy on 8 textures

References

[1] Bingni Guo, Jiawang Nie, and Zi Yang. “Learning diagonal Gaussian mixture models and incomplete
tensor decompositions”. In preparation.


