Introduction

We study the inverse problem of determining the diffusion coefficient of a second-order elliptic PDE on a closed manifold from noisy measurements of the solution. Inspired by manifold learning techniques, we approximate the elliptic differential operator with a kernel-based integral operator that can be discretized via
Monte-Carlo without reference to the Riemannian metric. We adopt a Bayesian perspective to the inverse Monte-Car), and establish an upper-bound on the total variation distance between the true posterior and the approximate posterior. Supporting numerical results show the effectiveness of the proposed methodology

Bayesian Formulation of the Problem
We consider the elliptic equation

$$
\begin{equation*}
\mathcal{L}^{\kappa} u:=-\operatorname{div}(\kappa \nabla u)=f, \quad x \in \mathcal{M}, \tag{1}
\end{equation*}
$$

where κ is a function on \mathcal{M}. We are interested in the inverse problem of determining the diffusion coefficient function κ from noisy measurements of u of the form

$$
y=\mathcal{D}(u)+\eta,
$$

where the observation map $\mathcal{D}: L^{2} \rightarrow \mathbb{R}^{\jmath}$ will be assumed to be known and $\eta \sim \mathcal{N}(0, \Gamma)$ for given positive definite $\Gamma \in \mathbb{R}^{J \times J}$
The Bayesian formulation consists of three ingredients: the prior, the forward map, and the posterior
Prior: Writing $\kappa=e^{\theta}$, we put a prior π over θ that is supported on some Banach space \mathcal{B}.
Forward map: Under certain regularity assumptions on κ and f, equation (1) has a unique weak solution Forward map: Under certain regularity assumptions on κ and f, equation (1) has a unique weak solution
in the space $L_{\text {2 }}^{2}$ of mean-zero square integrable functions on \mathcal{M}. This allows us to define a forward map $\mathcal{F}: \theta \in \mathcal{B} \mapsto u \in L_{0}^{2}$, i.e., the map that associates each coefficient θ with its unique solution.
Posterior: Provided that the map $\mathcal{D} \circ \mathcal{F}: \mathcal{B} \rightarrow \mathbb{R}^{J}$ is measurable, the posterior π^{y} can be written as a chase of measure with respect to the prio

$$
\frac{d \pi^{y}}{d \pi}(\theta) \propto \exp \left(-\frac{1}{2}|y-\mathcal{D} \circ \mathcal{F}(\theta)|_{\Gamma}^{2}\right),
$$

with $|\cdot|_{\Gamma}^{2}:=\left\langle\left\langle, \Gamma^{-1} \cdot\right\rangle\right.$. Therefore one can use the posterior mean for estimating the truth and the posterio credible intervals for uncertainty quantification.

Approximating the Forward Map
The forward map involves the solution operator of the PDE and is usually not known analytically. Various numerical methods such as finite element method have shown success in approximating the solution. However, most of the methods rely on knowing certain representations of the manifold \mathcal{M}, which is somehow restrictive. Therefore, we propose an approximate solution that can be discretized without ful points on \mathcal{M} is available. points on \mathcal{M} is avaliable.
We exploit ideas from diffusion maps proposed by [1] to approximate the Laplace-Beltrami operator $\Delta_{\mathcal{M}}$: $=$ $-\operatorname{div}(\nabla \cdot)$. Let

$$
G_{\varepsilon} u(x):=\frac{1}{\sqrt{4 \pi} \varepsilon^{\frac{m}{2}}} \int_{\mathcal{M}} \exp \left(-\frac{|x-\tilde{x}|^{2}}{4 \varepsilon}\right) u(\tilde{x}) d V(\tilde{x}),
$$

We have

$$
\begin{equation*}
G_{\varepsilon} u(x)=u(x)+\varepsilon\left(\omega u(x)-\Delta_{\mathcal{M}} u(x)\right)+O\left(\varepsilon^{2}\right), \quad x \in \mathcal{M} \tag{2}
\end{equation*}
$$

We then approximate $\mathcal{L}^{\kappa}=-\operatorname{div}(\kappa \nabla \cdot)$ by the following relation $-\operatorname{div}(\kappa \nabla u)=\sqrt{\kappa}\left[\Delta_{\mathcal{M}}(u \sqrt{\kappa})-u \Delta_{\mathcal{M}} \sqrt{\kappa}\right]=\frac{\sqrt{\kappa}}{\varepsilon}\left[u G_{\varepsilon} \sqrt{\kappa}-G_{\varepsilon}(u \sqrt{\kappa})\right]+O\left(\varepsilon^{2}\right):=\mathcal{L}_{\varepsilon}^{\kappa} u+O\left(\varepsilon^{2}\right)$.

Writing out explicitly

$$
\mathcal{L}_{\varepsilon}^{\kappa} u(x)=\frac{1}{\sqrt{4 \pi} \varepsilon^{\frac{m}{2}+1}} \int_{\mathcal{M}} \exp \left(-\frac{|x-\tilde{x}|^{2}}{4 \varepsilon}\right) \sqrt{\kappa(x) \kappa(\tilde{x})}[u(x)-u(\tilde{x})] d V(\tilde{x}) .
$$

It turns out the approximate equatio

$$
\mathcal{L}_{\varepsilon}^{\kappa} u=f
$$

also has a unique weak solution in L_{0}^{2} so that we can define an approximate forvard map $\mathcal{F}_{\varepsilon}: \mathcal{B} \mapsto L_{0}^{2}$ The approximate posterior is the

$$
\frac{d \pi_{\epsilon}^{y}}{d \pi}(\theta) \propto \exp \left(-\frac{1}{2}\left|y-\mathcal{D} \circ \mathcal{F}_{\epsilon}(\theta)\right|_{\stackrel{1}{r}}^{2}\right)
$$

Choice of Prior

We will consider Gaussian priors of the form

$$
\pi=\mathcal{N}\left(0, C_{\tau, s}\right), \quad C_{\tau, s}=\left(\tau l+\Delta_{\mathcal{M}}\right)^{-s}
$$

where $\Delta_{\mathcal{M}}$ is the Laplace-Beltrami operator on \mathcal{M}. Random samples of π admit a Karhunen-Loève expansion

$$
v=\sum_{i=1}^{\infty}\left(\tau+\lambda_{i}\right)^{-s / 2} \xi_{i} \varphi_{i}, \quad \xi_{i} \stackrel{i . i . d}{\sim} \mathcal{N}(0,1)
$$

where $\left(\lambda_{i}, \varphi_{i}\right)^{\prime}$'s are eigenpairs of $\Delta_{\mathcal{M}}$. Such priors are related to Gaussian processes with Matérn covariance functions in the Euclidean setting [3]. The parameter τ controls the essential frequencies and hence the inverse length scale of the samples paths. The parameter s controls the decay of the coefficients and samples paths of π belong to C^{4}, which will be needed in the following theoretical results.

Theoretical Results

Forward map approximation: Suppose that $f \in \mathcal{C}^{3, \alpha}$ and $\kappa \in \mathcal{C}^{4}$, with κ bounded below $\kappa_{\text {min }}>0$. Let u solve $\mathcal{L}^{\kappa} u=f$, and u_{ε} solve $\mathcal{L}_{\varepsilon}^{\kappa} u_{\varepsilon}=f$ weakly in L_{0}^{2}. Then for $\frac{1}{4}<\beta<\frac{1}{2}$ and ε sma enough depending on β,

$$
\left\|u-u_{\varepsilon}\right\|_{L^{2}} \leq C A(\kappa)\|f\|_{H^{3} \varepsilon^{\varepsilon^{4 \beta-1}}}
$$

where C is a constant depending only on \mathcal{M} and $A(\kappa)$ is a function of $\kappa_{\text {min }},\|\kappa\|_{\mathcal{C}^{3}},\|\kappa\|_{\mathcal{C}^{4}}$ Posterior approximation: Let π be a Gaussian measure on \mathcal{C}^{4}, and suppose that $f \in \mathcal{C}^{3, \alpha}$ for $0<\alpha<1$. Then for any $\frac{1}{4}<\beta<\frac{1}{2}$ and ε sufficiently small depending on β,
$d_{\mathrm{TV}}\left(\pi^{y}, \pi_{\varepsilon}^{y}\right) \leq C \varepsilon^{4 \beta-1}$,
where C is constant depending only on \mathcal{M}.

Discretization

We now demonstrate how to discretize the approximate operator \mathcal{L}^{k} for computation purposes. Suppose We now demonste Then $\mathcal{L}_{\varepsilon}^{\kappa} u$ evaluated at the point cloud is approximated by
$\mathcal{L}_{\varepsilon}^{\kappa} u\left(x_{i}\right) \approx \frac{1}{\sqrt{4 \pi} \pi \varepsilon^{\frac{m}{2}+1}} \sum_{j=1}^{n} \exp \left(-\frac{\left|x_{i}-x_{j}\right|^{2}}{4 \epsilon}\right) \sqrt{\kappa\left(x_{i}\right) \kappa\left(x_{j}\right)} q_{\varepsilon}\left(x_{j}\right)^{-1}\left[u\left(x_{i}\right)-u\left(x_{j}\right)\right]:=L_{\varepsilon, n}^{\kappa} n\left(x_{i}\right), \quad$ (3 where q_{ε} is an estimate of q. Using the relation (2) we can approximate q up to first order in ε by $G_{\varepsilon} q$, i.e. we set

$$
q_{\varepsilon}\left(x_{j}\right):=\frac{1}{\sqrt{4 \pi} n \varepsilon^{\frac{m}{2}}} \sum_{k=1}^{n} \exp \left(-\frac{\left|x_{j}-x_{k}\right|^{2}}{4 \varepsilon}\right)
$$

The discretization of equation (1) becomes

$$
L_{\varepsilon, n}^{\kappa} u_{n}=f_{n},
$$

where f_{n} is the n-dimensional vector with entries $f\left(x_{i}\right)$. One can see from (3) that $L_{\varepsilon, n}^{\kappa}$ is positive semidefinite and self-adjoint under the weighted iner product $(u, v):=^{1} \sum^{n}=1(x) v\left(x_{1}\right)\left(x_{1}\right)^{-1}$. Hence $L_{\varepsilon, n}^{\kappa}$ admits a nonnegative spectrum $\left\{\lambda_{i} \eta_{1}^{n}\right.$ with $\lambda_{1}=0$ and an orthonormal basis of eigenfunctions $\left\{v_{i}\right\}_{i=1}^{n}$ wih respect to $\langle\cdot, \cdot\rangle_{q}$, with $v_{1} \equiv 1$. We then set the solution to be

$$
u_{n}=\sum_{i=2}^{n} \frac{f_{n}^{i}}{\lambda_{i}^{\prime}} v_{i}
$$

where the $f_{n}^{\prime}=\left\langle f_{n}, v_{i}\right\rangle$. The prior π can be discretized similarly and we will use the pCN algorithm for posterior sampling.

Numerical Results

One Dimensional Problem on an Unknown Ellipse

We consider \mathcal{M} as the ellipse parametrized by $\iota(\omega)=(\cos \omega, 3 \sin \omega)^{\top}, \omega \in[0,2 \pi]$. Set the truth as

$$
\kappa^{\dagger}=2+\cos \omega, \quad u^{\dagger}=\cos \omega
$$

and compute f analytically \mathcal{M} is then siven as a sample of points. Below are the recostructions given f and J noise observations of the form $y_{i}=u^{\dagger}\left(x_{i}\right)+\mathcal{N}\left(0, \sigma^{2}\right)$.

(

$J=100$.

$J=200$

= 400

Figure: Posterior means and 95% credible intervals for $\sigma=0.1$ and different J 's. Here $K_{0.025}$ and $k_{0.975}$ represent the 2.5%

Two Dimensional Problem on an Unknown Artificial Surface

We consider \mathcal{M} as a cow-shaped surface, which consists of 2930 data points. To avoid inverse crime, we generate our truth using 2930 points and then set up our inverse problem on a subset of 1000 points. Let Δ_{2930} be a graph Laplacian constructed with the full 2930 points. κ^{\dagger} is generated from $\mathcal{N}\left(0, \tau 1+\Delta_{2930}\right)^{-t}$ for $\tau=0.7, s=6$ and u^{\dagger} is the rescaled second eigenvector of Δ_{2930}. Below are the reconstructions.

References

[^0]
[^0]:

