
Kernel Methods for Bayesian Elliptic Inverse Problems on Manifolds
John Harlim 1 Daniel Sanz-Alonso 2 Ruiyi Yang 2

jharlim@psu.edu {sanzalonso,yry}@uchicago.edu

Introduction

We study the inverse problem of determining the diffusion coefficient of a second-order elliptic PDE on
a closed manifold from noisy measurements of the solution. Inspired by manifold learning techniques, we
approximate the elliptic differential operator with a kernel-based integral operator that can be discretized via
Monte-Carlo without reference to the Riemannian metric. We adopt a Bayesian perspective to the inverse
problem, and establish an upper-bound on the total variation distance between the true posterior and the
approximate posterior. Supporting numerical results show the effectiveness of the proposed methodology.

Bayesian Formulation of the Problem

We consider the elliptic equation
Lκu := −div(κ∇u) = f , x ∈ M, (1)

where κ is a function on M. We are interested in the inverse problem of determining the diffusion
coefficient function κ from noisy measurements of u of the form

y = D(u) + η,

where the observation map D : L2 → RJ will be assumed to be known and η ∼ N (0, Γ) for given positive
definite Γ ∈ RJ×J .

The Bayesian formulation consists of three ingredients: the prior, the forward map, and the posterior.
Prior: Writing κ = eθ, we put a prior π over θ that is supported on some Banach space B.
Forward map: Under certain regularity assumptions on κ and f , equation (1) has a unique weak solution
in the space L2

0 of mean-zero square integrable functions on M. This allows us to define a forward map
F : θ ∈ B 7→ u ∈ L2

0, i.e., the map that associates each coefficient θ with its unique solution.

Posterior: Provided that the map D ◦ F : B → RJ is measurable, the posterior πy can be written as a
change of measure with respect to the prior

dπy

dπ
(θ) ∝ exp

(
−1

2|y − D ◦ F(θ)|2Γ
)

,

with | · |2Γ := 〈·, Γ−1·〉. Therefore one can use the posterior mean for estimating the truth and the posterior
credible intervals for uncertainty quantification.

Approximating the Forward Map

The forward map involves the solution operator of the PDE and is usually not known analytically. Various
numerical methods such as finite element method have shown success in approximating the solution.
However, most of the methods rely on knowing certain representations of the manifold M, which is
somehow restrictive. Therefore, we propose an approximate solution that can be discretized without full
knowledge of M. In particular, we will be interested in the case where only an unstructured sample of
points on M is available.
We exploit ideas from diffusion maps proposed by [1] to approximate the Laplace-Beltrami operator ∆M :=
−div(∇·). Let

Gεu(x) := 1
√

4πε
m
2

∫
M

exp
(

−|x − x̃ |2

4ε

)
u(x̃)dV (x̃),

We have
Gεu(x) = u(x) + ε

(
ωu(x) − ∆Mu(x)

)
+ O(ε2), x ∈ M. (2)

We then approximate Lκ = −div(κ∇·) by the following relation

− div(κ∇u) =
√

κ
[
∆M(u

√
κ) − u∆M

√
κ
]

=
√

κ

ε

[
uGε

√
κ − Gε(u

√
κ)
]

+ O(ε2) := Lκ
εu + O(ε2).

Writing out explicitly,

Lκ
εu(x) = 1

√
4πε

m
2 +1

∫
M

exp
(

−|x − x̃ |2

4ε

)√
κ(x)κ(x̃)[u(x) − u(x̃)]dV (x̃).

It turns out the approximate equation
Lκ

εu = f

also has a unique weak solution in L2
0 so that we can define an approximate forward map Fε : B 7→ L2

0.
The approximate posterior is then

dπ
y
ε

dπ
(θ) ∝ exp

(
−1

2|y − D ◦ Fε(θ)|2Γ
)

.

Choice of Prior

We will consider Gaussian priors of the form
π = N (0, Cτ,s), Cτ,s = (τ I + ∆M)−s,

where ∆M is the Laplace-Beltrami operator on M. Random samples of π admit a Karhunen-Loève
expansion

v =
∞∑
i=1

(τ + λi)−s/2ξiϕi , ξi
i.i.d.∼ N (0, 1)

where (λi , ϕi)’s are eigenpairs of ∆M. Such priors are related to Gaussian processes with Matérn covari-
ance functions in the Euclidean setting [3]. The parameter τ controls the essential frequencies and hence
the inverse length scale of the samples paths. The parameter s controls the decay of the coefficients and
hence regularity of the sample paths. By Sobolev embedding, a sufficiently large s will guarantee that the
samples paths of π belong to C4, which will be needed in the following theoretical results.

Theoretical Results

Forward map approximation: Suppose that f ∈ C3,α and κ ∈ C4, with κ bounded below by
κmin > 0. Let u solve Lκu = f , and uε solve Lκ

εuε = f weakly in L2
0. Then for 1

4 < β < 1
2 and ε small

enough depending on β,
‖u − uε‖L2 ≤ CA(κ)‖f ‖H3ε

4β−1,

where C is a constant depending only on M and A(κ) is a function of κmin, ‖κ‖C3, ‖κ‖C4.

Posterior approximation: Let π be a Gaussian measure on C4, and suppose that f ∈ C3,α for
0 < α < 1. Then for any 1

4 < β < 1
2 and ε sufficiently small depending on β,

dTV(πy , π
y
ε ) ≤ Cε4β−1,

where C is constant depending only on M.

Discretization

We now demonstrate how to discretize the approximate operator Lκ
ε for computation purposes. Suppose

we are only given an unstructured point cloud {xi}n
i=1 distributed according to some unknown density q.

Then Lκ
εu evaluated at the point cloud is approximated by

Lκ
εu(xi) ≈ 1

√
4πnε

m
2 +1

n∑
j=1

exp
(

−
|xi − xj |2

4ε

)√
κ(xi)κ(xj)qε(xj)−1[u(xi) − u(xj)] := Lκ

ε,nu(xi), (3)

where qε is an estimate of q. Using the relation (2) we can approximate q up to first order in ε by Gεq,
i.e. we set

qε(xj) := 1
√

4πnε
m
2

n∑
k=1

exp
(

−
|xj − xk|2

4ε

)
.

The discretization of equation (1) becomes
Lκ

ε,nun = fn,

where fn is the n-dimensional vector with entries f (xi). One can see from (3) that Lκ
ε,n is positive

semidefinite and self-adjoint under the weighted inner product 〈u, v〉q := 1
n
∑n

j=1 u(xi)v(xi)qε(xi)−1.
Hence Lκ

ε,n admits a nonnegative spectrum {λi}n
i=1 with λ1 = 0 and an orthonormal basis of

eigenfunctions {vi}n
i=1 wih respect to 〈·, ·〉q, with v1 ≡ 1. We then set the solution to be

un =
n∑

i=2

f i
n

λi
vi ,

where the f i
n = 〈fn, vi〉q. The prior π can be discretized similarly and we will use the pCN algorithm for

posterior sampling.
Numerical Results

One Dimensional Problem on an Unknown Ellipse

We consider M as the ellipse parametrized by ι(ω) = (cos ω, 3 sin ω)T , ω ∈ [0, 2π]. Set the truth as
κ† = 2 + cos ω, u† = cos ω

and compute f analytically. M is then given as a sample of 400 points. Below are the reconstructions
given f and J noise observations of the form yi = u†(xi) + N (0, σ2).

J = 100. J = 200. J = 400.
Figure: Posterior means and 95% credible intervals for σ = 0.1 and different J ’s. Here κ0.025 and κ0.975 represent the 2.5%
and 97.5% posterior quantiles respectively.

Two Dimensional Problem on an Unknown Artificial Surface

We consider M as a cow-shaped surface, which consists of 2930 data points. To avoid inverse crime, we
generate our truth using 2930 points and then set up our inverse problem on a subset of 1000 points. Let
∆2930 be a graph Laplacian constructed with the full 2930 points. κ† is generated from N (0, τ I+∆2930)−s

for τ = 0.7, s = 6 and u† is the rescaled second eigenvector of ∆2930. Below are the reconstructions.

Posterior mean κ̄. Truth κ†. Error |κ̄ − κ†|. Standard deviation.
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