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Motivation

• Eigenfunctions are used for reducing dimensionality and analyzing dynamics
in biochemistry.

• Monte Carlo methods are needed to estimate eigenfunctions, but these
methods have limited accuracy.

• What is driving the error?

• How can we optimize Monte Carlo’s efficiency for the future?

Contributions

– In [4], I proved the convergence of the leading spectral estimation method in
biochemistry, called the "variational approach to conformational dynamics"
(VAC), and derived detailed error bounds.

– In our follow-up work [2], we extended VAC to make it more robust for appli-
cations with limited data and flexible neural network approximation spaces.

VAC algorithm

The variational approach to conformational dynamics (VAC) estimates eigenval-
ues and eigenfunctions of the transition operator Tτf (x) = E [f (Xτ )|X0 = x] for
a Markov process Xτ with a time-reversible distribution µ.

simulation: complete lots of short, independent simulations (∼
100−1000) or a few longer simulations (∼ 1−10).

preparation: choose a set of basis functions (∼ 10−1000) and estimate
expectations Eµ

[
φi (X0)φj (Xτ )

]
.

spectral estimation: apply VAC to estimate eigenvalues and eigenfunctions.

post-processing: look at top eigenfunctions (∼ 1− 10) to find meaningful and
interpretable patterns.

Specifically:

1. Form matrix Ĉ (0) with entries Ĉij (0) ≈ Eµ
[
φi (X0)φj (X0)

]
.

2. Form matrix Ĉ (τ ) with entries Ĉij (τ ) ≈ Eµ
[
φi (X0)φj (Xτ )

]
.

3. Solve eigenvalue problem λ̂τi Ĉ (0) v̂i (τ ) = Ĉ (τ ) v̂i (τ ).

4. Return estimated eigenvalues λ̂τi = e−σ̂
τ
i τ and eigenfunctions γ̂τi =∑

j v̂
i
j (τ )φj.

Problems with VAC

1. No one knows how to choose a lag time.

2. How do we know if VAC is VACcurate?

Establishing VAC convergence

I established the convergence of VAC eigenspace estimates under a spectral gap condition.

Fig. 1: VAC error vanishes as the number of basis functions increases and the length of the time series increases.

Error bounds for VAC

The analysis of VAC required proving original error bounds.

• Standard bounds for the approximation of eigenspaces (e.g., [3, 1]) depend on the
inverse gap between eigenvalues.

• However, the gap between any two non-trivial eigenvalues of the transition operator
vanishes exponentially fast with the lag time parameter τ . Therefore, the standard
bounds increase exponentially as τ →∞.

• In contrast to this asymptotic scaling, I contributed a sharp new perturbation bound
that depends only on the inverse relative gap between eigenvalues. This new bound
reaches its minimal value in the large τ limit, demonstrating the benefit of long lag times
for reducing approximation error.

Theorem 1 (Traditional error bound). Let H � 0 be a Hermitian operator with top eigenval-
ues λ0 (H) ≥ · · · ≥ λk (H), and let Uk be the span of the top k eigenfunctions of H. Let PΦ
be the orthoprojector onto a subspace Φ. Set H′ = PΦH|Φ, and let U ′k be the span of the
top k eigenfunctions of H′. Then the distance between Uk and U ′k is bounded by

1 ≤
d
(
Uk,U ′k

)2

d (Uk,Φ)2
≤ 1 +

1

4

‖H‖22
|λk (H)− λk+1 (H′)|2

(1)

Theorem 2 (Improved error bound). In the setting of Theorem 1, d
(
Uk,U ′k

)
also satisfies

1 ≤
d
(
Uk,U ′k

)2

d (Uk,Φ)2
≤ 1 +

1

4

1

|λk (H′) /λk+1 (H)− 1|2
. (2)

Lastly, my asymptotic expressions for the estimation error do depend on the inverse spectral
gap and grow in the large τ limit. Therefore, it is best to select an intermediate lag time.

New IVAC algorithm

• The VAC algorithm is sensitive to lag time, so we developed a new inte-
grated VAC (IVAC) algorithm that incorporates multiple lag times, thereby
increasing the robustness.

• IVAC searches for orthonormal eigenfunctions γτ1 , . . . , γ
τ
k that maximize

k∑
i=1

∫ τmax

τ=τmin

E [γi (X0) γi (Xτ )] dτ .

• We can do this either using a linear combination of basis functions (linear
IVAC) or a nonlinear combination of basis functions (nonlinear IVAC), such
as the output of a neural network.
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Fig. 2: IVAC performs about as well as VAC with the perfect lag time and much better than VAC with a bad lag time.
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