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Diffusion processes: Introduction and Motivation

Objectives:
Stochastic differential equation for diffusion processes: e Compute the probability density function (pdf) f(«,t) of X (¢)
dX(t) =a(X(t-))dt+b(X(t—))dB(t) + c¢(X(t—)) dC(¢t), X(t) € R4t €[0,T] e Solve the PDE for the pdf (Fokker-Planck) and the characteristic function (chf)
e B is a vector of mp independent standard Brownian motions e Numerical methods, e.g. FD/FEM, for Fokker-Planck equation can be unstable for large dimensions
e C is a vector of m¢ independent compound Poison processes C'.(t) Physics-informed neural networks (PINNs):
— Cp(t) = Z,],V;(lt) Y, where Y,., are iid jump sizes with cdf F’ o Investigate the use of PINNs to represent the pdf and chf

— {Nr} are homogeneous Poisson processes with intensities 1. } e xamine theoretically and numerically which PDE to solve

e Utilize prior information on the diffusion process to design the network architecture

PDE for the characteristic function PDE for the probability density function (Fokker-Planck equation)

If Poisson white noise is absent: f(x,?) satisfies

By stochastic analysis, the chf p(u,t),u € R? satisfies
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T Z Ar B [ /R € (X(t e (X ))y) dF(y) —e X )] ; If Poisson white noise is present: a generalized Fokker-Planck equation may not exist
r=1
0(0,t) =1, Vt,0c R e The PDE for the chf may be more preferable to solve. Consider

e ap = [a]y, b;j; = [b];;, ¢\ is r-th column of ¢ dX(t) = —pX(t—)dt 4+ dC(t), t > 0.

e Becomes a PDE for ¢(u,t) if a,b are polynomials, ¢ has special structure — p>0,C(t) = Zg Sl) Y, N(t) is a Poisson process with intensity A, Y,, are iid
e This is generally a complex-valued integro-differential equation — PDE for o(u,t) is W = — pu% + A (E [etu] — 1) ©(u,t)
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— PDE for f(x,t) is 2@ = 50 (38(x,4)) + AY 50, EL LNV 0.t

Physics-informed neural network representation of the pdf and chf

Training neural networks to approximate the chf Training neural networks to approximate the pdf
e Represent ¢(u,t) by a neural network ¢(u,t) with 2-dimensional output o Express f(x,t) = T dee__z(:ft)) -— to satisfy the normalization constraint
R
e Prior information on the SDE (i.e. symmetry) can be utilized to show that ¢(u,t) is real-valued e Represent v(z,t) by a neural network o(z, t)
Algorithm: e The PDE for v(a,t) is an integro-differential equation with no unique solution
e Truncate the frequency domain to D C R Algorithm:
e Select N, collocation points {(u?p : t?p )}fiolp C D x [0,T] to enforce the governing equations e Truncate the spatial domain to D C R?
o Select Nyc collocation points {(u;“,0)},Zf C D x 0 to enforce the initial condition e Select Np, collocation points {(x?, "7 )},f\;()f” C D x |0,T] to enforce the governing equations
e Select Ny collocation points { (0, t?)}f;\gl C 0 x [0,T7] to enforce the condition at the origin e Select N;¢ collocation points {(z!¢, O)},,]J\;If C D x 0 to enforce the initial condition
e Solve for the neural network parameters to minimize the loss e Solve for the neural network parameters to minimize the loss
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where Q is the PDE satisfied by op(u,1) where M is the PDE satisfied by v(x, t)
e Compute the NN approximation f(x,t) of f(x,t) via f(x,t) = (2;)d Jra €™ ® @(u, t) du e Compute the NN approximation f(z,t) = e V@D f(z,1)
y fRd e—v(xz,t) do y
Applications
Duffing oscillator with (Gaussian white noise e The neural network approximates the pdf well despite the large loss e Marginal pdf of X; at £ = 0.75 from the
e The loss |[M[0(x?, t)]| is large for large ||S?|| where probability mass is small NN approximation to the Fokker-Planck
- . . . d chf PDE
1 Xi(8)| _ , Xa(t) dt + 0 dB(t) e The large errors far from the origin are nullified when v(a,t) is normalized to obtain f(x,t) e e
Xa(t) V(X1 (t) + aXi(?)’) — 2¢vXa(t) VT 90 o
Fokker-Planck
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Fokker-Planck equation (PDE for v(ax,t)) 3 oss
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e Truncated domain is (x1,22) € [—4,4] x [-8,8], t € |0, 1] e Domain is (u,usz) € [—6,6]2, t € [0,1] 3 03 | M \‘
~ : : : Shadl
o Represept v(x,t) as a feedforward network with 3 inputs, 1 output, 6 hidden e Represent p(x,t) as a feedforward network with 3 inputs, 1 output, 5 hidden S 02| { \
layers with 50 neurons each layers with 50 neurons each B 015
e Value of loss function at training collocation points is 0.013158 e Value of loss function at training collocation points is 5.3324 x 1075 B, o
¢ C](\)ﬁ;pute f(x,t) from v(x,t) and compare with Monte Carlo estimate e Symmetry of Brownian motion and drift terms imply chf is real-valued =l
x, 1
fo @, N e Compare with Monte Carlo estimate ¢ (u,t) )
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e More examples, i.e. Poisson white noise
and 4-D example, in cited reference
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