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Motivation
e DNN Approximation and ML based Computation pervade all areas of CSE,
e Hardware development aligns with ML algorithms and data structures,

e Data driven simulation in Computational (life, social, economic,...) Science and Engineering:
“established” methodologies (FEM, FDM, FVM,...) suitable?

e ML algorithms offer new paradigms (adversarial NNs, self-play learning, ...) for numerical PDE
solves,

e new role of “traditional” PDE solvers (“coaches” for DNN surrogates),
e UQ: composition of data ensemble model with PDE solution operator,
e new questions: given data, is PDE (model) right?

Implications

— recast established numerical DE simulation methodologies in the “DL world”
(PiNNSs, ONets, quantized NNs and variable-precision numerics, ...)

—> analyze mathematically the approximation capabilities of DL-based architectures for PDEs
—> synthesize strengths of PDE-based and ML-based simulation methods.

— PDE simulation methods meet ML-dedicated hardware (TPUs, Neural Processors,...)



This talk: Deep ReLU NN Architectures emulate “best-in-class” numerical methods for

e AFEM

e hp-FEM

e Radial Bases

e Spectral Methods

¢ high-dimensional approximation (option pricing, UQ), Bayesian inverse problems,...)



Outline
1. Deep ReLU NN Approximation for PDE solution classes

e Deep RelLU and High Order FEM (mostly 1d)  [Ph. Petersen, J. Opschoor]

(a) ReLU DNN emulation of polynomials
(b) ReLU DNN emulation of Splines
(c) ReLU DNN emulation of hp-FEM (1d)

e Deep RelLU and hp-FEM (mostly 3d)  [C. Marcati, Ph. Petersen, J. Opschoor]

(a) weighted analytic regularity (countably normed spaces)
(b) hp-FEM results

(c) ReLU DNN expression rate bounds

e Deep RelU expression rates of Option Prices in geometric Lévy Models (fractional parabolic) [L. Gonon]

2. Bayesian Inverse Problems (BIPs) [J. Opschoor, L. Herrmann, J. Zech]

e Examples: Diffusion Equation, Nonlinear Hyperbolic CL
e Prior constructions: Level Set, Affine-Parametric, Besov priors

e Holomorphy of Data-to-Qol map

e ReLU DNN Expression Rates

3. Conclusion, Extensions, References.



Deep ReLU Approximation
Activation of DNN: o(x): R — R:x— max{z,0}.
e Depth ~ number of hidden layers L € N,
e Numbers N, € N of computation nodes in layer ¢ € {0,..., L},
A NN © with input dimension d and depth of L layers is a sequence of matrix-vector tuples
O = (W), Wb, ..., (W bh)),
where Ny =dand Ny, ..., N; € N, and where W’ € R¥*N-1 and b e R¥ for ¢ =1, ..., L.



Deep ReLU Approximation

ReLU DNN as a map f: RN — RN+ ig realized by DNN @ if
ex. weights w} ; € R, biases b’ € Rs.t. for all z = ()2, holds

No
J=o(Subnet) et

1=1

A =0 Zw“” +o ), te{l,...,L—1}, je{l,...,Nui},

N1
flz) = (2 L1y NL—H _ (Z wL+1 Ly bL+1>

Ny: dimension of NN input, N;.1: dimension of NN output, z‘*!: output of unit j in layer .
% p P J y

f=R(P)

J=1




Deep ReLU Approximation

J. A. A. Opschoor and Ph. Petersen and ChS
Deep ReLU Networks and High-Order Finite Element Methods,
Anal. Appl. (Singap.) 18 (2020), no. 5, 715-770.

J. A. A. Opschoor and ChS and ]J. Zech
Exponential ReLU DNN expression of holomorphic maps in high dimension,

SAM Report 2019-35 (to appear in Constr. Approx.)

C. Marcati, J. A. A. Opschoor, Ph. Petersen and ChS
Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities
SAM Report 2020-65 (in review)
https://math.ethz.ch/sam/research/reports.html?id=938



Deep ReLU Approximation
Why ReLU?
e Why not?
e Good numerical stability of ReLU DNN constructions,
e ReLU activation = R(®) is continuous,piecewise affine (“P;-FEM”),
e exact representation of rigid body motions,

e ReLU proofs are blueprints for corresponding arguments w. more sophisticated, fixed activa-
tions,
(!! (Substantial gains possible by “training the activation” [Maiorov&Pinkus]))

e More Efficient Numerical Evaluation than e.g. tanh(), sigmoid, softmax, etc.



Deep ReLU Approximation

ReLU NNs and P;-FEM in I = (0, 1):

Lemma 1 (P;-FEM ReLU Emulation).
For every partition T of I = (0,1) with N elements and for every v € S1(I,7T) ex. NN ®" such that

R(®") =wv, depth(®") =2, size(P’) <3N+1, M;z(®") <2N, M, (P")<N+1.

Remark:

e Covers both, fixed-knot spline approximations, as well as free-knot spline approximations.
Corollary 2. Assume

o s <max{2,14+1/q},0< qg<q < o0,

e < s <min{l+1/¢,s—1/qg+1/¢},0<t,t <o,

Thenex. C = C(q,q,t,t',s,5") > 0s.t. for every N € Nand for every f € B} ,(I) ex. NN CD}V s.t.

|f =R (2F)

BY (1) < O (size ((I)éfv))_(s_S) 1N Bs -
a,

1)



Deep ReLU Approximation

Emulation of Polynomials by Deep ReLU NNs

Proposition 1 (Yarotsky 2017 ReLU Multiplication Lemma).
Ex. Cp,C}, Cy, C4, > 0 such that, for every k > 0 and 6 € (0,1/2), ex. NN X5, s.t.

d d

0 — LR (%) (@ b)' Jo— LR (%5 (@ b)'} <5

SUp ‘ab R (;57,{) (a, b)‘ < d and esssup max{ b da

lal,[b] < lal,[b] <

d/da and d/db weak derivatives.
Furthermore, for every r > 0 and for every ¢ € (0,1/2)

M (%5) < Oy <log2 (max‘g’””’ 1}) ; 1) LG <G (log2 (maxg’“ 1}) i 1) |

Va,b e R: R (Xg,) (a,0) =R (xs,) (0,b) = 0. (2)




Deep ReLU Approximation

Emulation of Polynomials by Deep ReLU NNson [ = (—1,1)

Proposition 2. For each n € Ny and each polynomial v € P,([—1,1]) such that v(z) = ., _, 0z’, with
Co =Dy |0¢], exist NNs { DV} .c(91) with Ny = N; = 1s.t.

lv = R(P) ooy <
R(®2)(0

depth(®

size(P

) =
)Zv( );

) S (1+ logy(n)) logy(Co/e) + (logy(n))”

) Snlogy(Co/e) +nlogy(n) + (1+log2(n))210g2(00/8)

(Y
€
(Y
€



Deep ReLU Approximation
Emulation of hp-FEM by Deep ReLU NNs on I = (0, 1)

Proposition 3. Forall p = (p;)icq1....ny C N, all partitions T of I into N open, dzs]omt connected subintervals

.....

and for all v € Sp(1,T), 0 <e < 1/2ex. NNs {07} g1 such that for all 1 < ¢’ < oo holds

lv =R (277) leaq’([) <evlyry
depth (027 7) < (1 + 10gs(Pimax)) (2pmax +log, (1/€)) +logy (1/€) + (1 + logy (Pmax) )

N
81ze CD”Tp sz + log, (1/¢) Z:pH—log2 (1/¢) <1+Zlog%(pi)>
i=1
+ (1 + ZP@ 10%3(:“0)

+ N ((1 jlogg(pmaxD (meax + 10g2 (1/8)) + (1 + logg(pmax))) .

In addition, R (®27P) (x;) = v(x;) forall j € {0, ..., N}, where {a;}} are the nodes of T.



Deep ReLU Approximation of Singularities

Emulation of hp-FEM by Deep ReLU NNs on [ = (0, 1)
Remark: ReLU DNNs ¢ [whose realizations R(®) are continuous, piecewise affine]
deliver approximation rates of

e free-knot splines at fixed polynomial order, or free-knot, variable-degree splines,
e spectral methods and hp-FEM.

Singularities v : [ = (0,1) — R with point singularity at + = 0: weighted analytic class

B4(1) is the set of all u € > M I): exist C,(u), d(u) > 0 such that
s ke 1

Vk >0 ’u’Hg’f(I) < O*dk_g(k — f)! .

Here

k 2 .
—n U / 1f E = O,

ul it ) = |27 D[ Huuijk,g(l) — D w—o lul o !
g 8 > e’“’ Kt nt HUHHf iy, fLEN.



Deep ReLU Approximation

Emulation of hp-FEM by Deep ReLU NNs on I = (0, 1)

Theorem 4 (Exp. Convergence of hp-FEM). (K. Scherer, 1. Babuska & B.Q.Guo, ...)
Let o, € (0,1), A =0"' —1,u € B3(I).
For juy = (0, B, d) = max {1, 285} and for pu > pg let p = (p;)L; C N be defined as

p1 = 1, pi = LLL’LJfOT’Z c {2,,N}
Then ex. C7 > 0 and for every N € Nex. v € Sp(I, T, n) such that
o v(x;))=u(z;)forie{l,...,N}

[
Ju =l g1y < Crexp (— (1= p)log(l/o)N) = Crexp(—cN).
As N — oo, dim(Sp(1, T,.n)) = O(N?) i.e.

1/2
lu— vy S exp(—bNpop).



Deep ReLU Approximation

Exponential Convergence of Deep ReLU NNs for singular functions on 7 = (0, 1)

Theorem 5. [Opschoor, Petersen, ChS (AA 2020)]
Forall o, € (0,1), all u € B3(I) and all 1 > po(o, 5, d(u))
exist constants Cg, cg > 0 and ReLU DNNs {®“7N} v such that for all N € N

Hu — R(dw <Csexp(—cgN),

M
and such that

depth(@"“7N) < Nlogy(N), size(®""Y) < (2u° + ) N + (1 + N?logy(N)),

Corollary: for every ¢ > 0 ex. b = b(¢, 0, 5,d(u)) s.t. forall N € N
= R@“)| 1y S exp (b (size(@"o))1/4)

Analogous results for space dimension 2 and 3:
C. Marcati and J. A. A. Opschoor and P. C. Petersen and Ch. Schwab,
Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities

Report 2020-65, SAM, ETH https://math.ethz.ch/sam/research/reports.html?id=938



Deep ReLU Approximation
Radial Basis Functions (RBFs) in High Dimension [Opschoor, Petersen, ChS AA2020]
Proposition 6 ((B. McCane&L.Szymanski, Neurocomputing 313(2018))).
Eucl

For all dimensions d > 2 and for every target accuracy § € (0, 1], exists a ReLU NN & ;5 with input dimension
Ny = d and output dimension Ny = 1, such that R ((IDC%};CI) is 1-Lipschitz continuous,

allygo — R (P53 (2)] <O liallypa,  forallz e R 3)

‘H'HZ,Rd —R (®5%c1) <9, forae. x € R? 4)

Wl,oo(Rd)
and

d

d
depth (CIDdE’%d) < logy(d) log, (107‘(’5) , size (@E%Cl) < 16(d — 1) log; (107‘(5) .



Radial Basis Functions (RBFs) in High Dimension [Opschoor, Petersen, ChS AA2020]

Theorem 7. Letd € N, R > 0, Ac R™, b c R, and D = {x ¢ R?: || Az + bllyra < R}
Let g € W2°°([0, R]) be such that for all 3 € (0, 1) the function g can be approximated by a ReLU NN % &
with

Hg —-R (@%,R) HWLOO([QR]) < B gl (0.m)) » depth (@%ﬂ) = Ly g, size (@%’R> = M3 . (5)
Consider anisotropic radial-like function
fi:D—= Rz g(|Az 4 b||yga)-

Then, for every ¢ € (0, 1] exists a ReLU NN <I>£ p such that
|7 =R (o)

7= 1(%0) .
depth (CIDi:D) < Lg r + logy(d)log, (307Td\/g max{ R, 1}/6) + 1,

HLOO(D) <€ HQHWLOO([O,RD ) (6)

<:|A — 7
D) <e [|Allyra l9llw2oc 0. ()

size (cpf,D) <2Mj 5+ 4d? + 64(d — 1) log, (307rd\/21 max{R, 1} /5) +4d.

Anisotropic RBF systems in dimension d can be emulated by ReLU DNNs
with exponential convergence and without curse of dimension.



Option Pricing in Geometric Lévy Models in R? [L. Gonon (Munich) and ChS (2020)]

uq(7, s) = Elpa(s1 exp(XfJ), ey Sq exp(Xf_{d))}, 7€ [0,T],s € (0,00)".

Assume that there exists constants ¢ > 0,p > 2,¢ > 0 and, for all € € (0, 1], exists a ReLU NN ¢, 4
with

als) — Ripea)(s)| < ced?’(1+||s|"), forall s € (0,00)", ®)
M(po) < cdPe, ©9)
Lip(R(p-4)) < cd”. (10)

In addition, assume that the Lévy triplets (A% v, 19) of X¢ are bounded:
exists B > 0 such that foreachd e N, 7,5 =1,...,d,

AL < B, 4/ < B, /

RA{|lyl|<1}

Then ex. constants x,p,q € [0,00) and ReLU NNs .4, ¢ € (0,1], d € N such that for any target

accuracy € € (0,1] and for any d € N the number of weights grows only polynomially M (1), 4) < rdPe™1
and the approximation error between the NN . ; and the option price is at most ¢, that is,

sup |ug(T,s) — R(veq)(s)| < e.

s€[a,b)?

epyiyd(y) < B, / yfud(y) < B. (11)
| {llyll<1} )

Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models, L. Gonon and Ch. Schwab Report 2020-52, SAM

https://math.ethz.ch/sam/research/reports.html?id=925



Exponential ReLU DNN Expression of Electron Densities [MOPS 2020)]
Q = R?/(2Z) periodic square/cube, V : () — R analytic potential s.t. V(z) > Vy > 0 forall z €
36, Ay >0 [[P20000 || ey < Aol Va e N (12)
where r(x) = dist(z, (0,...,0)).
Schrédinger eigenproblem: find smallest eigenvalue )\ € R and eigenfunction v € H'(Q) s.t.
(A +V + Ju/"u =M inQ, [ull 20y = 1. (13)

Proposition 8. Let (A, u) € R x H () be a solution of problem (13) with minimal X\, where V satisfies (12).
Then, for every ¢ € (0,1/2] exists ReLU NN ., such that

lu— R<®6,U)HH1(Q) <, (14)

and
size(D. ) = O(]logy(e) ™), depth(®. ) = O(]logy(e)| logy(| loga(e)])).

[MOPS2020]: Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities
C. Marcati and J. A. A. Opschoor and P. C. Petersen and Ch. Schwab,
Report 2020-65, SAM, ETH https://math.ethz.ch/sam/research/reports.html?id=938



Bayesian Inverse Problems [M.Dashti & A.M.Stuart (2014)], [R.Nickl (2016)]

BIP: finite dimensional case
Goal:

Uncertain datum u € R" from noisy observations § € R”.
Assume: n > K
e noiseless observable § related to u by forward map § = G(u), u — G(u) Lipschitz
e ¢ accessible only up to additive, centered observation noise: centred RV n ~ Q,,

e Observation Noise Model:

e Uncertain u: prior a.c. w.r. to Lebesgue measure

u ~ mp = po(u)\" .

e Observation Noise ¢: law a.c. w.r. to Lebesgue measure A" in R*

n~ Qp=p\*.



Bayesian Inverse Problems[M.Dashti & A.M.Stuart (2014), R. Nickl (2016)]

BIP: finite dimensional case
Theorem [Bayes]
Assume data § € R” is such that

Z=270) = / p(0 — G(u))po(u)du >0 .
Then, u|é is RV on R" distributed according to Bayesian posterior 7° with Lebesgue density
1 n
p%o:§mw4%mmmo,ueﬁ
w.r. to prior mp whose density with respect to A" on R" is py.

Terminology:

e likelihood:
(u,0) = p(6 — G(u))

e Bayesian Potential:
b(u; 6) = —log(p(d — G(u)))



Bayesian Inverse Problems[M.Dashti & A.M.Stuart (2014), R. Nickl (2016)]

BIP: finite dimensional case

Example (Nondeg., centered gaussian obs. noise) Qy ~ N (0,T), ' € REXA

O(u;0) = —log p(d — G(u)) = %(5 — G(u)) ' T7H(0 - G(u))

“negative log-likelihood”, (observation noise) covariance-weighted “data-to-prediction misfit functional”

dm’ 1
T e ), 2 /  expl=0(us0)m(du)

Data-to-Qol (“Quantity of Interest”) map: given, measurable Qol ¢ : R" — R,
expectation under Bayesian posterior given data § € R, is

2l =B [Top) =~ [ explbusd)olumla)

Goal:
express Data-to-Qol map 6 — E™ || by DNN.



Bayesian Inverse Problems[M.Dashti & A.M.Stuart (2014), R. Nickl (2016)]

X, Y real, sep. Banach, Borel o-alg. o(X), o(Y).

Y = R", X function space of uncertain PDE input.
Input-to-Observable map G : X — Y assumed measurable.
BIP: given obs. noise 7 € Y, observe data ¢ such that

0 =G(u)+n, ueX.

Bayesian prior 7 on (X, 0(X)), independent noise model n ~ Q; on (Y,c(Y)).

— u ~ my, n ~ Qpind. RVs, vy := my ® Q, well defined.
Law (u,0) € X x Y: givenu € X, d|u € Y is RV with law Q, (translate of Q) by G(u)).
Assume
Q,<<Qy m—aeue X.

Then, for mp-a.e. u € X, ®(u;-) : Y — R measurable.
Law of RV (u,d):  (u,0) ~v =m ® Q,, v << 1y with
dv

o= expl—0(u:d)



Bayesian Inverse Problems[M.Dashti & A.M.Stuart (2014), R. Nickl (2016)]

Theorem [Bayes]

Assume @ : X x Y — R is yyp-measurable with
d— Z(0) = / exp(—®(u; d))mo(du) >0 Qp-a.e.d €Y .
X
Then law of u|é, °, exists, and ©° << . For v-a.e. (u, )
dm® 1
dﬂ'() B Z((S)

exp(—P(u;6)) .



PDE models
Setting;:
e u € X' C X uncertain PDE input,
e S : X' — V input-to-solution map, (Lipschitz) continuous,
e O € (V*)I observation functional, G :=0oS: X' — Y = R input-to-observable map,
e QolQ e V™.
e Bayes: Data-to-Qol map

V35 510 = 5 [ (Qo8)u)nld - Glujmidu) € B
is well-defined.
e Gaussian Obs. noise: n ~ N(0,T) =
Y 58 B Q] = % /X (Q 0 S)(u)) exp(—D(u: ))mo(du) € R .



PDE Example 1: Diffusion with uncertain coefficient
Diffusion: D C R?bounded, Lipschitz, f € L*(D) given.
f+V-(uVg) =0 in H YD), qlap=0.
o V =H}(D),
e input-to-solution map

S:{ue L>¥D):essinf u(zx) >0} >V :urgq

zeD

satisfies

1S 1w

essinfep{u(x)}

IS(w)llv <

e S is Lipschitz continuous = measurability of the likelihood:
Vu,u' € {u € L*®(D) : essinf,cp u(x) > 0} such that S(u) € W' (D) for some r € [2,c0),

|S(u) — S]]y < IVS(u)|zrp)

~ essinfep{u/(x)

}HU - UIHLZT/(T—2)(D) :

For X' C {u € L* : essinf,ep{u(x)} > 0} being (Borel) measurable, endow X’ with the L*(D)-
norm and suppose that X’ is separable with respect to the L*°(D)-norm, use v’ = 2r/(r — 2) = o
and r = 2.



PDE Example 2: SCL with uncertain flux
Nonlinear, scalar hyperbolic CL: Cauchy problem
0iq + 0. (u(q)) =0in R x R, qli=o =q inR.

Initial condition ¢y € L'(R) has bounded variation and assumed known, i.e., deterministic.
Maximum principle satisfied by the (unique) entropy solutions implies:

Uncertain Lipschitz continuous flux function u € W'>([—M, M]), M := ||qo]| p~(wr)-

Well-posed: For every flux u € Wh([— M, M]) exists a unique entropy solution ¢ = S;(u) with

Vi 00 (8l < ol + TV @)l aran
Lipschitz-continuity of solution map:
vt >0 1S (w) — Se(@)[| g1y < TV (o) [|0x(w — W[ oo~ 101y

— Bayesian setting with X = Wl>°(—M M),V = LYR), Q € V* = L¥(R).
Prior Constructions: Level-Set priors, Affine-parametric priors, Log-Besov parametric priors,...

[L. Herrmann, M. Keller and ChS:
Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems.
MathComp 2020 ]



Regularity of the Data-to-Qol map

1. Lipschitz Regularity: finite-dimensional setting u € R", §j € R”:
Proposition[Herrmann, ChS, Zech (2020)]:
Assume

e p € Lip(R®) with respect to norm || o || on R%,
e QoI € L1<X/,7T()>.

Then, for every r > 0 exists C(r) > 0 such that for every ¢, € R* with ||4]|, ||| < 7,
v8,8' € B,(0): B[] —E” [l < Cls - & .

2. Holomorphy: infinite-dimensional setting, u € X’ C X, § € R¥:
Proposition[Herrmann, ChS, Zech (2020)]:
Assume Q o S € LY X', my) and ®(u;d) = (6 — G(u))"T71(§ — G(u))/2 for s.p.d. matrix ' € RE*E,
Then Data-to-Qol map
0= | (Qo8)(u)exp(=P(u;0))mo(du)
X/
is holomorphic .



ReLU DNN expression of the Data-to-Qol map

Theorem [Herrmann, ChS, Zech (2020)]

1. Forward UQ: Let K € N and assume f : C* — C is holomorphic and f : R* — R.
Then,

forall K > 1, r > 0 ex. constant C,,, > 0 such that foralln € N

exists ReLU NN 7, : [-r,7]¥ — R such that

sup [ £(8) — ful0)] < Crexp(—(size( f,)) 7).

{0eRE:|5|<r}

depth(f,) < C(1 4 nlog(n)), size(f,) < C(1+n) ™ for C > 0ind. of n.

2. Inverse UQ
Setting of inf. dimens. Bayes Theorem, centered nondegenerate gaussian obs. noise 7.
Then, for all » > 0, k > 0 exists C,,, > 0 such that Vn € N exists ReLU NN f,, : |-, r|® — Rs.t.

sup ]E”(S(gp) — fn(0)| < Cyr exp(—kn).
{eRE:|5|<r}

Ex. C; > 0 s.t. i i
depth(f,) < Ci(1+nlog(n)), size(f,) < Ci(1+n)"*

L. Herrmann, ChS, J. Zech: Deep NN Expression Rates for posterior expectations in Bayesian Inversion Inverse Problems (2020)



Conclusions

e Deep ReLU NNs emulate all major discretization schemes

(h-FEM, Spectral FEM, hp-FEM, MsFEM, BEM, ENO, WENO, ....)

® Deep ReLU NNs allow exponential convergence in terms of the DNN size
on solution sets of elliptic and parabolic PDEs with analytic data

e Deep NNs resolve in elliptic problems with multiple scales (homogenization, Helmholtz, ....)
at NN depth which is logarithmic in the scale parameter

e DNNs emulate variable float point precision algorithms through quantization and depth
e ReLU DNNs break the curse of dimensionality in parametric PDEs in UQ
e DNNs represent solution manifolds for high-dimensional, parametric PDEs w.o. curse of dim.

e BIP: Sufficient conditions [additive gaussian obs. noise, Lipschitz forward solution map] for holomorphy of
Data-to-Qol map in BIP; small ReLU NNs express Data-to-Qol very well.

e Exponential expression rates for Data-to-Qol map in BIP by DNN (and other architectures, sparse polynomials,
tensors, ...)

e Proofs of emulation bounds (“in principle”) constructive.
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Thank You.



