Robust Learning with implicit residual networks

Viktor Reshniak, Data Analysis and Machine Learning, Oak Ridge National Laboratory

Clayton Webster, University of Tennessee, Knoxville and Lirio LLC
National Laboratory

DESCRIPTION

In this effort, we propose a new deep architecture utilizing residual blocks inspired by implicit discretization schemes. As opposed to the standard feed-forward networks, the outputs of the proposed implicit residual blocks are defined as the fixed points of the appropriately chosen nonlinear transformations. We show that this choice leads to the improved stability of both forward and backward propagations, has a favorable impact on the generalization power and allows to control the robustness of the network with only a few hyperparameters. In addition,

Results

 troduce new parameters and can potentially lead to a reduction in the number of required layers due to improved forward stability. Finally, we derive the memory-efficient training algorithm, propose a stochastic regularization technique and provide numerical results in support of our findings.[1] V. Reshniak, C. Webster, Robust learning with implicit residual networks, arXiv:1905.10479, 2020.
[2] https://github.com/vreshniak/ImplicitResNet
Vector field regularization Spectral normalization:

$$
F^{\alpha, \beta}(\gamma, x):=\frac{\alpha+\beta}{2} x+\frac{\beta-\alpha}{2} S(\vartheta) \odot F\left(\frac{\gamma}{\|\gamma\|_{2}}, x\right)
$$

where $S(\vartheta) \in(0,1)$ is the sigmoid function. All eigenvalues of the Jacobian $\frac{\partial F^{\alpha, \beta}(\gamma, x)}{\partial x}$ are located in the disc with radius $(\beta-\alpha) / 2$ centered at $(\alpha+\beta) / 2$.

Trajectory regularization:

$$
\frac{\alpha_{d i v}}{d T} \sum_{t=0}^{T}{ }^{\prime}\left(\frac{t}{T}\right)^{p} \nabla \cdot F\left(\gamma_{t}, y_{t}\right)+\frac{\alpha_{T V}}{T} \sum_{t=1}^{T}\left\|\gamma_{t}-\gamma_{t-1}\right\|^{2}
$$

using Hutchinson trace estimator

$$
\nabla \cdot F\left(\gamma_{t}, y_{t}\right)=\mathrm{E}_{z \sim \mathcal{N}(0,1)}\left(z^{T} \frac{\partial F\left(\gamma_{t}, y_{t}\right)}{\partial y_{t}} z\right)
$$

Example 1. Regression

Network: $T=5$ residual layers and GeLU MLP with 3 hidden layers of width 10 without normalization

Nonlinear iterations per residual layer
Example 2. Periodic ODE

$$
\dot{z}_{1}=\frac{2}{3} z_{1}-\frac{4}{3} z_{1} z_{2}, \quad \dot{z}_{2}=z_{1} z_{2}-z_{2}
$$

Network: $T=50$ residual layers and ReLU MLP with 4 hidden layers of width 20 without normalization

Loss: $\frac{1}{50 N} \sum_{i=1}^{N} \sum_{j=1}^{50}\left\|y_{j}^{i}-z^{i}(0.2 j)\right\|^{2}$

(Top) Learned vector fields and trajectories on the time interval $t \in[0,10]$. (Bottom) Eigenvalues of the vector fields along these trajectories.

IMPLICIT LAYER: $y=x+\Phi(\gamma, x, y)$ Block of implicit layers for $t=1, \ldots, T$:

$$
y_{t}=y_{t-1}+\Phi\left(\gamma_{t}, y_{t-1}, y_{t}\right)
$$

$y_{0}=x$.
Nonlinear maps $\Phi\left(\gamma, y_{t-1}, y_{t}\right)$
$(1-\theta) F\left(\gamma_{t-1}, y_{t-1}\right)+\theta F\left(\gamma_{t}, y_{t}\right)$
or
$F\left(\gamma_{t-1},(1-\theta) y_{t-1}+\theta y_{t}\right) \quad \gamma$ is cádlág function

Derivatives of the nonlinear maps:

$\Phi(\gamma, x, y)$	$(1-\theta) F(\gamma, x)+\theta F(\gamma, y)$	$F(\gamma, z)$, $z=(1-\theta) x+\theta y$
$\frac{\partial \Phi(\gamma, x, y)}{\partial x}$	$(1-\theta) \frac{\partial F(\gamma, x)}{\partial x}$	$(1-\theta) \frac{\partial F(\gamma, z)}{\partial z}$
$\frac{\partial \Phi(\gamma, x, y)}{\partial y}$	$\theta \frac{\partial F(\gamma, y)}{\partial y}$	$\theta \frac{\partial F(\gamma, z)}{\partial z}$
$\frac{\partial \Phi(\gamma, x, y)}{\partial \gamma}$	$(1-\theta) \frac{\partial F(\gamma, x)}{\partial \gamma}+\theta \frac{\partial F(\gamma, y)}{\partial \gamma}$	$\frac{\partial F(\gamma, z)}{\partial \gamma}$

Forward propagation:

Output of implicit layer:
$y \leftarrow \arg \min _{z}\|z-x-\Phi(\gamma, x, z)\|^{2}$

Backward propagation:

The backpropagation formulas follow immediately

$$
\begin{aligned}
& \left(I-\frac{\partial \Phi(\gamma, x, y)}{\partial y}\right)^{T} \overline{\nabla_{y} L}=\nabla_{y} L \\
& \nabla_{x} L=\left(I+\frac{\partial \Phi(\gamma, x, y)}{\partial x}\right)^{T} \overline{\nabla_{y} L} \\
& \nabla_{\gamma} L=\frac{\partial \Phi(\gamma, x, y)^{T}}{\partial \gamma} \overline{\nabla_{y} L}
\end{aligned}
$$

