

DESCRIPTION

implicit residual layer

In this effort, we propose a new deep architecture utilizing residual blocks inspired by implicit discretization schemes. As opposed to the standard feed-forward networks, the outputs of the proposed implicit residual blocks are defined as the fixed points of the appropriately chosen nonlin-We ear transformations. show that this choice leads to the improved stability of both forward and backward propagations, has a favorable impact on the generalization power and allows to control the robustness of the network with only a few hyperparameters. In addition,

the proposed reformulation of ResNet does not introduce new parameters and can potentially lead to a reduction in the number of required layers due to improved forward stability. Finally, we derive the memory-efficient training algorithm, propose a stochastic regularization technique and provide numerical results in support of our findings.

- [1] V. Reshniak, C. Webster, Robust learning with implicit residual networks, *arXiv:1905.10479*, 2020.
- [2] https://github.com/vreshniak/ImplicitResNet

VECTOR FIELD REGULARIZATION

Spectral normalization:

$$F^{\alpha,\beta}(\gamma,x) := \frac{\alpha+\beta}{2}x + \frac{\beta-\alpha}{2}S(\vartheta) \odot F\left(\frac{\gamma}{\|\gamma\|_2},x\right)$$

where $S(\vartheta) \in (0,1)$ is the sigmoid function. All eigenvalues of the Jacobian $\frac{\partial F^{\alpha,\beta}(\gamma,x)}{\partial x}$ are located in the disc with radius $(\beta - \alpha)/2$ centered at $(\alpha + \beta)/2$.

Trajectory regularization:

$$\frac{\alpha_{div}}{dT} \sum_{t=0}^{T} \left(\frac{t}{T} \right)^p \nabla \cdot F(\gamma_t, y_t) + \frac{\alpha_{TV}}{T} \sum_{t=1}^{T} \|\gamma_t - \gamma_{t-1}\|^2$$

using Hutchinson trace estimator

$$\nabla \cdot F(\gamma_t, y_t) = \mathbf{E}_{z \sim \mathcal{N}(0,1)} \left(z^T \frac{\partial F(\gamma_t, y_t)}{\partial y_t} z \right)$$

ROBUST LEARNING WITH IMPLICIT RESIDUAL NETWORKS

Viktor Reshniak, Data Analysis and Machine Learning, Oak Ridge National Laboratory

Clayton Webster, University of Tennessee, Knoxville and Lirio LLC

RESULTS

Vector fields, stability regions and spectrum along trajectories | Classifiaction accuracy for data corrupted with Gaussian noise.

$$\dot{z}_1 = \frac{2}{3}z_1 - \frac{4}{3}z_1z_2, \qquad \dot{z}_2 = z_1z_2 - z_2$$

$$:: \frac{1}{50N} \sum_{i=1}^{N} \sum_{j=1}^{50} \left\| y_j^i - z^i(0.2j) \right\|^2$$

Noise	Accuracy				
itensity	$\theta = 0$	0.25	0.50	0.75	1.00
0.00	100.0	100.0	100.0	100.0	100.0
0.10	98.1	100.0	99.9	99.9	100.0
0.20	90.9	96.7	97.1	97.9	98.1
0.30	78.5	87.3	90.3	91.9	94.2
0.40	63.1	75.1	77.0	78.9	85.1
0.50	50.3	63.2	63.6	65.4	73.4

 $y_0 = x$.

 $F(\gamma_{t-1})$

 $\Phi(\gamma, x)$

 $\partial \Phi(\gamma,z)$ $\partial \Phi(\gamma,z)$

 $\partial \Phi(\gamma,z)$

Output

The backpropagation formulas follow immediately

Source Control And Control An

$$,(1-\theta)y_{t-1}+\theta y_t)$$

 γ is cádlág function

Derivatives of the nonlinear maps:

x,y)	$(1-\theta)F(\gamma, x) + \theta F(\gamma, y)$	$F(\gamma,z), \ z=(1- heta)x+ heta y$
${x,y)\over c}$	$(1- heta)rac{\partial F(\gamma,x)}{\partial x}$	$(1- heta)rac{\partial F(\gamma,z)}{\partial z}$
$\frac{x,y)}{y}$	$ heta rac{\partial F(\gamma,y)}{\partial y}$	$ heta rac{\partial F(\gamma,z)}{\partial z}$
$\left({x,y} ight)$	$(1- heta)rac{\partial F(\gamma,x)}{\partial \gamma}+ hetarac{\partial F(\gamma,y)}{\partial \gamma}$	$rac{\partial F(\gamma,z)}{\partial \gamma}$

Forward propagation:

$$\hat{y}$$
 \hat{y} \hat{y}

$$y \leftarrow \arg\min_{z} \|z - x - \Phi(\gamma, x, z)\|^2$$

Backward propagation:

$$cL$$
 (nsolve) (fpmap) ($\nabla_y L$
($\nabla_\gamma L$)

$$\frac{y}{x} = \left(I - \frac{\partial \Phi(\gamma, x, y)}{\partial y}\right)^{-1} \left(I + \frac{\partial \Phi(\gamma, x, y)}{\partial x}\right)$$

$$\left(I - \frac{\partial \Phi(\gamma, x, y)}{\partial y}\right)^T \overline{\nabla_y L} = \nabla_y L$$
$$\nabla_x L = \left(I + \frac{\partial \Phi(\gamma, x, y)}{\partial x}\right)^T \overline{\nabla_y L}$$
$$\nabla_\gamma L = \frac{\partial \Phi(\gamma, x, y)}{\partial \gamma}^T \overline{\nabla_y L}$$