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In this effort, we propose a
new deep architecture uti-
lizing residual blocks in-
spired by implicit discretiza-
tion schemes. As opposed to
the standard feed-forward
networks, the outputs of
the proposed implicit resid-
ual blocks are defined as
the fixed points of the ap-
propriately chosen nonlin-
ear transformations. We
show that this choice leads
to the improved stability of
both forward and backward
propagations, has a favor-
able impact on the general-
ization power and allows to
control the robustness of the
network with only a few hy-
perparameters. In addition,

the proposed reformulation of ResNet does not in-
troduce new parameters and can potentially lead to
a reduction in the number of required layers due
to improved forward stability. Finally, we derive
the memory-efficient training algorithm, propose a
stochastic regularization technique and provide nu-
merical results in support of our findings.
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Vector field regularization
Spectral normalization:
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where S(ϑ) ∈ (0, 1) is the sigmoid function. All eigenvalues of

the Jacobian
∂Fα,β(γ, x)

∂x
are located in the disc with radius

(β − α)/2 centered at (α+ β)/2.

Trajectory regularization:

αdiv

dT

T∑
t=0

′
(
t

T

)p
∇ · F (γt, yt) +

αTV

T

T∑
t=1

‖γt − γt−1‖2

using Hutchinson trace estimator
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Results
Example 1. Regression

Network: T = 5 residual layers and GeLU MLP with 3 hidden
layers of width 10 without normalization

Loss:
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Evolution of the loss components
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Vector fields, stability regions and spectrum along trajectories

Example 2. Periodic ODE

ż1 =
2

3
z1 −

4

3
z1z2, ż2 = z1z2 − z2

Network: T = 50 residual layers and ReLU MLP with 4
hidden layers of width 20 without normalization

Loss:
1
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(Top) Learned vector fields and trajectories on the time inter-
val t ∈ [0, 10]. (Bottom) Eigenvalues of the vector fields along
these trajectories.

data θ = 0.0 θ = 0.5 θ = 1.0

(Top) Single trajectory generated by three trained implicit
residual networks on the time interval t ∈ [0, 200]; (Bottom)
continuous-time trajectory generated by the learned vector
fields of these residual networks on the same time interval.

Example 3. MNIST classification
Network: ResNet-18 with 8 input channels and F−3,1

Noise
intensity

Accuracy
θ = 0 0.25 0.50 0.75 1.00

0.00 100.0 100.0 100.0 100.0 100.0
0.10 98.1 100.0 99.9 99.9 100.0
0.20 90.9 96.7 97.1 97.9 98.1
0.30 78.5 87.3 90.3 91.9 94.2
0.40 63.1 75.1 77.0 78.9 85.1
0.50 50.3 63.2 63.6 65.4 73.4

Classifiaction accuracy for data corrupted with Gaussian noise.

Implicit layer: y = x+ Φ(γ, x, y)
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γ is cádlág function

Block of implicit layers for t = 1, . . . , T :

yt = yt−1 + Φ(γt, yt−1, yt),

y0 = x.

Nonlinear maps Φ(γ, yt−1, yt):

(1− θ)F (γt−1, yt−1) + θF (γt, yt)

or
F (γt−1, (1− θ)yt−1 + θyt)

Derivatives of the nonlinear maps:

Φ(γ, x, y) (1 − θ)F (γ, x) + θF (γ, y)
F (γ, z),

z = (1 − θ)x+ θy
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Forward propagation:

x
nsolve fpmap

ŷ y

γ
Output of implicit layer:

y ← arg minz ‖z − x− Φ(γ, x, z)‖2

Backward propagation:
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The backpropagation formulas follow immediately(
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