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Introduction

Nearshore bathymetry, the topography of the ocean floor in coastal zones, is vital
for predicting the surf zone hydrodynamics and for route planning to avoid sub-
surface features. Hence, it is increasingly important for a wide variety of applica-
tions, including shipping operations, coastal management, and risk assessment.
However, direct high resolution surveys of nearshore bathymetry are rarely per-
formed due to budget constraints and logistical restrictions. Another option when
only sparse observations are available is to use Gaussian Process regression
(GPR), also called Kriging. But GPR has difficulties recognizing patterns with
sharp gradients, like those found around sand bars and submerged objects, es-
pecially when observations are sparse. In this work, we present several deep
learning-based techniques to estimate nearshore bathymetry with sparse, multi-
scale measurements. We propose a Deep Neural Network (DNN) to compute
posterior estimates of the nearshore bathymetry, as well as a conditional Genera-
tive Adversarial Network (cGAN) that samples from the posterior distribution. We
train our neural networks based on synthetic data generated from nearshore sur-
veys provided by the U.S. Army Corps of Engineer Field Research Facility (FRF)
in Duck, North Carolina. We compare our methods with Kriging on real surveys
as well as surveys with artificially added sharp gradients. Results show that di-
rect estimation by DNN gives better predictions than Kriging in this application.
We use bootstrapping with DNN for uncertainty quantification. We also propose
a method, named DNN-Kriging, that combines deep learning with Kriging and
shows further improvement of the posterior estimates.

Contribution

In this work, we propose the use of deep learning techniques within a Bayesian
framework that provides uncertainty quantification. We apply it to the interpola-
tion problem of predicting nearshore bathymetry, given sparse point-wise mea-
surements and grid cell average measurements. Our main contributions are as
follows:

• We propose two deep learning-based approaches that can learn highly non-
linear and complex distributions automatically through its training data.

– We trained a conditional Generative Adversarial Network (cGAN) to learn
the posterior distribution of nearshore bathymetry. This allows us to sam-
ple directly from the posterior distribution and compute different posterior
estimates including mean and standard deviation.

– We trained a fully connected DNN to estimate the posterior mean. Un-
certainty quantification is provided by combining our DNN model with
bootstrapping in Kriging. This approach is more computationally feasi-
ble than cGAN in terms of both training time and optimization of hyper-
parameters.

• We propose a method (DNN-Kriging) that uses Kriging to reduce the error in
the DNN’s prediction of the posterior mean. The motivation for this approach
is that the DNN is capable of learning fine-scale features, while Kriging can
accurately capture smooth components in the error. Here by “fine-scale" fea-
tures we mean features that usually involve rapid oscillations or large values
in the derivatives.

Application: Nearshore Bathymetry
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Fig. 1: Nearshore Bathymetry that has features with sharp gradients
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Fig. 2: Across-shore Section Comparisons

Uncertainty Quantification
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Fig. 3: Uncertainty quantification provided by cGAN, Krigin and DNN

Conclusion

In this work, we have explored the use of deep learning techniques from a
Bayesian perspective to estimate nearshore bathymetry with sparse point-wise
measurements and grid cell average measurements. We proposed using con-
ditional Generative Adversarial Networks (cGAN) as a purely data-driven ap-
proach to directly sample the posterior distribution. This usually has a chal-
lenging training process and requires extra effort for tuning of hyper-parameters.
We also proposed using a fully connected DNN to directly estimate the poste-
rior mean of the bathymetry, which can be combined with bootstrapping from
Kriging to provide uncertainty quantification. Both approaches provide more ac-
curate predictions than Kriging when sharp changes are present in nearshore
surveys. Finally, we proposed a method named DNN-Kriging that combines
Kriging’s ability to model smooth variations in the residuals with DNN’s ability to
capture fine-scale features. Results show that DNN-Kriging provides the best
estimate among all the methods.
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