
DeepXDE: A deep learning library for
solving differential equations

Lu Lu, Xuhui Meng, Zhiping Mao, George Karniadakis
Massachusetts Institute of Technology, Brown University

lu lu@mit.edu

Abstract

Physics-informed neural networks (PINNs) for solving par-
tial differential equations (PDEs):
• embed a PDE into the loss of the neural network,
• mesh-free,
• a unified framework: PDE, integro-differential equations
[1], fractional PDEs [2], and stochastic PDEs [3],

• solve inverse problems as easily as forward problems.
DeepXDE, a Python library for PINNs:
• solve multi-physics problems;
• solves time-dependent PDEs as easily as steady states;
• supports complex-geometry domains;
• enables the user code to be compact, resembling closely
the mathematical formulation.

1. PINNs for solving PDEs

1.1 PINN Algorithm
Consider the PDE parameterized by λ for the solution u(x)
with x = (x1, . . . , xd) defined on a domain Ω ⊂ Rd:

f

(
x;
∂u

∂x1
, . . . ,

∂u

∂xd
;
∂2u

∂x1∂x1
, . . . ,

∂2u

∂x1∂xd
; . . . ;λ

)
= 0, x ∈ Ω,

with boundary conditions (BC) B(u,x) = 0 on ∂Ω.
We consider time t as a special component of x, and Ω
contains the temporal domain. The initial condition (IC) can
be simply treated as a special type of Dirichlet boundary
condition on the spatio-temporal domain.

x

t

σ

σ

...

σ

σ

σ

...

σ

û

NN(x, t;θ)
∂
∂t

∂2

∂x2

∂û
∂t − λ∂2û

∂x2

PDE(λ)

I

∂
∂n

û(x, t)− gD(x, t)

∂û
∂n (x, t)− gR(u, x, t)

BC & IC

Loss θ∗

Tf

Tb

Minimize

Figure 1: Schematic of a PINN for solving the diffusion
equation ∂u

∂t = λ∂
2u
∂x2

with mixed BC u(x, t) = gD(x, t) on
ΓD ⊂ ∂Ω and ∂u

∂n(x, t) = gR(u, x, t) on ΓR ⊂ ∂Ω.

Procedure 1: The PINN algorithm for solving differential
equations.

1. Construct a neural network û(x;θ) with parameters θ as
a surrogate of the solution u(x).

2. Specify the two sets of “residual points”: Tf ⊂ Ω and
Tb ⊂ ∂Ω for the equation and boundary/initial conditions.

3. Specify a loss function by summing the weighted L2

norm of both the PDE equation and boundary condition
residuals.

4. Train the neural network to find the best parameters θ∗
by minimizing the loss function L(θ; T).

To measure the discrepancy between the neural network û
and the PDE constraints, we consider the loss function:

L(θ; T) = wfLf (θ; Tf) + wbLb(θ; Tb),
where

Lf (θ; Tf) =
1

|Tf |
∑
x∈Tf

∥∥∥∥∥f
(
x;
∂û

∂x1
, . . . ;

∂2û

∂x1∂x1
, . . . ; . . . ;λ

)∥∥∥∥∥
2

2

,

Lb(θ; Tb) =
1

|Tb|
∑
x∈Tb
‖B(û,x)‖22,

and wf and wb are the weights.

1.2 Approximation theory
Whether there exists a neural network that can simultane-
ously and uniformly approximate a function and its partial
derivatives?
For m = (m1, . . . ,md) ∈ Zd+, we set |m| := m1 + · · · + md,
and Dm := ∂|m|

∂x
m1
1 ...∂x

md
d

.

Theorem 1 (Pinkus, 1999) Let mi ∈ Zd+, i = 1, . . . , s, and
set m = maxi=1,...,s |mi|. Assume σ ∈ Cm(R) and σ is not
a polynomial. Then the space of single hidden layer neural
nets

M(σ) := span{σ(w · x + b) : w ∈ Rd, b ∈ R}
is dense in Cm1,...,ms

(Rd) := ∩si=1C
mi

(Rd), i.e., for any f ∈
Cm1,...,ms

(Rd), any compact K ⊂ Rd, and any ε > 0, there
exists a g ∈M(σ) satisfying maxx∈K |Dkf (x)−Dkg(x)| < ε,
for all k ∈ Zd+ for which k ≤mi for some i.

1.3 Learning mode
Recent studies show that for function approximation, neural
networks learn target functions from low to high frequen-
cies, but we show that the learning mode of PINNs is differ-
ent due to the existence of high-order derivatives.

Figure 2: Convergence of the amplitude for each fre-
quency during the training process. (A) A neural net-
work is trained to approximate the function f (x) =∑5
k=1 sin(2kx)/(2k). The color represents amplitude values

with the maximum amplitude for each frequency normal-
ized to 1. (B) A PINN is used to solve the Poisson equation
−fxx =

∑5
k=1 2k sin(2kx) with zero boundary conditions.

1.4 Residual-based adaptive refinement (RAR)
The mean residual

Er =
1

V

∫
Ω

∥∥∥∥∥f
(
x;
∂û

∂x1
, . . . ;

∂2û

∂x1∂x1
, . . . ; . . . ;λ

)∥∥∥∥∥ dx
Procedure 2: RAR for improving the distribution of residual
points for training.

1. Select the initial residual points T , and train the neural
network for a limited number of iterations.

2. Estimate the mean PDE residual Er by Monte Carlo inte-
gration, i.e., by the average of values at a set of randomly
sampled locations S = {x1,x2, . . . ,x|S|}:

Er ≈
1

|S|
∑
x∈S

∥∥∥∥∥f
(
x;
∂û

∂x1
, . . . ;

∂2û

∂x1∂x1
, . . . ; . . . ;λ

)∥∥∥∥∥ .
3. Stop if Er < E0. Otherwise, add m new points with the

largest residuals in S to T , and go to Step 2.

2. DeepXDE (https://deepxde.readthedocs.io)

2.1 Usage
Solving differential equations in DeepXDE is no more than
specifying the problem using the build-in modules, includ-
ing computational domain (geometry and time), PDE equa-
tions, BC/IC, constraints, training data, network architec-
ture, and training hyperparameters.

Procedure 3: Poisson equation over an L-shaped domain.
1. geometry

1 geom = dde.geometry.Polygon(
2 [[0, 0], [1, 0], [1, -1], [-1, -1], [-1, 1], [0, 1]])

2. PDE
1 def pde(x, y):
2 dy_xx = dde.grad.hessian(y, x, i=0, j=0)
3 dy_yy = dde.grad.hessian(y, x, i=1, j=1)
4 return -dy_xx - dy_yy - 1

3. BC
1 def boundary(x, on_boundary):
2 return on_boundary
3

4 def func(x):
5 return np.zeros([len(x), 1])
6

7 bc = dde.DirichletBC(geom, func, boundary)

4. data: geometry + PDE + BC + “training” points
1 data = dde.data.PDE(
2 geom, pde, bc, num_domain=1200, num_boundary=120)

5. network
1 net = dde.maps.FNN(
2 [2] + [50] * 4 + [1], "tanh", "Glorot uniform")

6. model: data + network
1 model = dde.Model(data, net)

7. train the model
1 model.compile("adam", lr=0.001)
2 model.train(epochs=50000)

Geometry Differential
equations

Boundary/initial
conditions Neural net

Training data data.PDE or
data.TimePDE Model

Model.compile(...)Model.train(...,
callbacks=...)Model.predict(...)

Figure 4: Flowchart of DeepXDE. White boxes: the PDE
problem and hyperparameters. Blue boxes combine white
boxes. Orange boxes: the three steps to solve the PDE.

Primitive geometries: interval, triangle, rectangle,
polygon, disk, cuboid, sphere.

A B

A | B

A - B

A & B

| &

-

Figure 5: Constructive solid geometry (CSG) examples.
(left) Union A|B, difference A − B, and intersection A&B.
(right) A complex geometry is constructed from primitive
geometries.

DeepXDE supports
1. Dirichlet/Neumann/Robin/periodic/general BC, & IC;
2. feed-forward network, and residual network.

2.2 Customizability
All the components are loosely coupled, and thus Deep-
XDE is well-structured and highly configurable.

3. Demonstration examples

3.1 Forward problem: Poisson equation

−∆u(x, y) = 1, (x, y) ∈ Ω, u(x, y) = 0, (x, y) ∈ ∂Ω.

A B C

Figure 6: Comparison of the PINN solution with the solu-
tion obtained by using spectral element method (SEM). (A)
SEM solution, (B) PINN solution, (C) the absolute error.

3.2 Inverse problems
The Lorenz system:

dx

dt
= ρ(y − x),

dy

dt
= x(σ − z)− y, dz

dt
= xy − βz.

A diffusion-reaction system on x ∈ [0, 1], t ∈ [0, 10]:

∂CA
∂t

= D
∂2CA
∂x2

− kfCAC2
B,

∂CB
∂t

= D
∂2CB
∂x2

− 2kfCAC
2
B.

 0

 4

 8

 12

 16

 0 1 2 3 4 5 6

A

P
ar

am
et

er
 v

al
ue

Iterations (104)

True ρ
True σ
True β

Identified ρ
Identified σ
Identified β

-1

 0

 1

 2

 3

 0 1 2 3 4 5 6 7 8

B

P
ar

am
et

er
 v

al
ue

Iterations (104)

True kf
True D

Identified kf
Identified D

Figure 7: Identified values of (A) the Lorenz system and
(B) diffusion-reaction system converge to the true values.

References

[1] L. Lu, X. Meng, Z. Mao, G. Karniadakis. DeepXDE: A
deep learning library for solving differential equations.
SIAM Rev. (to appear).

[2] G. Pang∗, L. Lu∗, G. Karniadakis. fPINNs: Fractional
physics-informed neural networks. SIAM J. Sci. Com-
put. 41.4 (2019): A2603-A2626. (∗Contributed equally)

[3] D. Zhang, L. Lu, L. Guo, G. Karniadakis. Quantify-
ing total uncertainty in physics-informed neural networks
for solving forward and inverse stochastic problems. J.
Comput. Phys. 397 (2019): 108850.

Workshop on Mathematical Machine Learning and Application, Virtually, December 2020

