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Abstract
As deep neural networks (DNNs) become deeper, the training time increases. In this perspective, multi-GPU par-
allel computing has become a key tool in accelerating the training of DNNs. In this presentation, we introduce
a novel methodology to construct a parallel neural network that can utilize multiple GPUs simultaneously from a
given DNN. We observe that layers of the DNN can be interpreted as time steps of a time-dependent problem and
can be parallelized by emulating a parallel-in-time algorithm called parareal. The parareal algorithm consists of
fine structures which can be implemented in parallel and a coarse structure which gives suitable approximations to
the fine structures. By emulating it, the layers of the DNN are torn to form a parallel structure, which is connected
using a suitable coarse network. We report accelerated and accuracy-preserved results of the proposed methodology
applied to ResNet-1001 on the datasets CIFAR-10 and CIFAR-100.

1 Introduction

• DNN training is time-consuming and there are demands to reduce training time these days.

• DNN has a feed-forward architecture whose sequential computations can be interpreted as time
steps of a time-dependent problem.

• We present a methodology to transform a given feed-forward neural network to another neural
network called parareal neural network which naturally adopts parallel computing.

• The proposed methodology is easy to program since there is no data structures lying on the subdo-
main interfaces.

2 The parareal algorithm

The parareal algorithm, proposed by Lions et al. [1], is a parallel-in-time algorithm to solve time-
dependent differential equations. For the purpose of description, the following system of ordinary
differential equations is considered:

u̇(t) = Au(t) in [0, T ], u(0) = u0, (2.1)

where A: Rm→ Rm is an operator, T > 0, and u0 ∈ Rm.

Algorithm 1: The parareal algorithm
Let ∆Tj = Tj+1 − Tj and 0 = T0 < T1 < · · · < TN = T .
for j ← 0 to N − 1 do

Solve
U1
j+1 −U1

j

∆Tj
= AU1

j+1, U1
0 = u0

end
for k ← 1, 2, . . . do

for j ← 0 to N in parallel do
Solve u̇kj (t) = Aukj (t) in [Tj, Tj+1], ukj (Tj) = Uk

j .
end
for j ← 0 to N − 1 do

Skj+1 = ukj (Tj+1)−Uk
j+1.

Solve
δkj+1 − δkj

∆Tj
= Aδkj+1 + Skj , δ

k
0 = 0.

Uk+1
j+1 = Uk

j+1 + δkj+1.
end

end

3 Parareal neural networks

Neural network setting

• fθ: X → Y is a neural network.

• fθ = hε ◦ gφ ◦ Cδ, θ = δ ⊕ φ⊕ ε,

•Cδ is a preprocessing operator and hε is a postprocessing operator.

• gφ is a block repetitive sturcture.

Parareal setting

• {Cjδj} is defined to satisfy C1
δ1

= Cδ and Cjδj for j = 2, . . . , N play similar roles to Cδ.

• {giφi} is a collection of parallel subnetworks such that gφ = gNφN
◦ gN−1

φN−1
◦ · · · ◦ g1

φ1
.

• {F jηj} is a coarse network satisfying that F jηj ≈ g
j+1
φj+1

and dim(ηj)� dim(φj+1).

Figure 1: (a) Feed-forward neural network fθ, (b) Parareal neural network f̄θ̄ with N parallel subnetworks (N = 3).

Proposition 1. Assume that the original network fθ is linear and F jηj = g
j+1
φj+1

for j = 1, . . . , N − 1.

Then we have f̄θ̄(x) = fθ(x) for all x ∈ X .

4 Application to ResNet-1001
We present an application of the proposed methodology to ResNet-1001, which is a typical convolu-
tional neural network for classification problems.
ResNet-1001 description
•Cδ is a single 3× 3 convolution layer.

•C1
δ1

= Cδ and Cjδj is a 1× 1 convolution with stride for j > 1.

• gφ consists of 333 residual units(RUs) which are decomposed into {gjφj} having d333/Ne RUs.

• {F jηj} is constructed using Nc := d12
N e RUs, which can have similar coverage to the parallel sub-

network gjφj.

• hε consists of global average pooling and fully connected layer.

Figure 2: Bottleneck structure of RU used in ResNet-1001.

5 Numerical results
Environment: Python, PyTorch
Machine: Intel Xeon Gold 5515, NVIDIA Titan RTX
Dataset: CIFAR-10, CIFAR-100
Training Strategy: Batchsize 128, Epoch 200, SGD with weight decay 0.0005, momentum 0.9, learn-
ing rate 0.1 which is reduced by a factor of 10 in the 80th and 120th epochs.

5.1 Performance comparison
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Figure 3: Comparison of the validation error rates(%) for ResNet-1001 and its parareal neural networks on CIFAR
datasets: [Left] CIFAR-10 and [Right] CIFAR-100 results.

Network CIFAR-10 CIFAR-100

ResNet-1001 5.03 21.13
Parareal ResNet-3 4.51 21.02
Parareal ResNet-6 4.35 20.94
Parareal ResNet-12 4.37 20.77
Parareal ResNet-18 4.11 20.46

Table 1: Error rates(%) on CIFAR datasets. Parareal ResNet-N denotes the parareal neural network usingN subnetworks
with Nc = d12

N e.

5.2 Gradient calculating time

Virtual wall-clock time

N Preprocessing
Parallel

subnetworks
Coarse
network Postprocessing Total

1 0.0010 1.4588 - 0.0009 1.4607
3 0.0012 0.5966 0.0543 0.0008 0.6529
6 0.0019 0.3062 0.0638 0.0007 0.3726
12 0.0023 0.1583 0.0797 0.0009 0.2412
18 0.0025 0.1067 0.1224 0.0010 0.2326
24 0.0020 0.0797 0.1701 0.0008 0.2526

Table 2: Gradient calculating time for ResNet-1001 (N = 1) and Parareal ResNet with (N = 3, 6, 12, 18, 24). It is a
measure of the time taken in one iteration for CIFAR dataset input x ∈ R3×32×32 with batch size 128.

6 Conclusion
• We proposed a novel methodology to construct a parallel neural network called the parareal neural

network which is suitable for parallel computation using multiple GPUs from a given feed-forward
neural network.

• The coarse network that corrects differences at the interfaces among subnetworks was introduced,
and it was proven both theoretically and numerically that the performance of the resulting parareal
network agrees with the original network.

• To the best of our knowledge, the proposed methodology is a new kind of multi-GPU parallelism
in the field of deep learning.
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