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Prediction with expert advice

In each t ∈ [T ],
• the player determines the mix of N experts to
follow - distribution pt ∈ ∆N ;
• the adversary allocates losses to them -
distribution at over [−1, 1]N ; and
• expert losses qt ∈ [−1, 1]N ∼ at, player’s choice
of expert It ∼ pt, these samples are revealed to
both parties.

Preliminaries

•Starting time T < 0, final time t = 0
• Instantaneous regret (vector): r = qI1− q
•Realized regret at t (vector): x = ∑

τ<t rτ
•Final-time regret (scalar) RT (p, a) = Ep,a maxi xi
•Player’s objective to minimize, and adversary’s
objective is to maximize, RT

Player value function

•Player p is Markovian: depends only on x, t
•Value function: vp = expected final-time regret
achieved by p if the game starts at realized regret
x and time t and the adversary behaves optimally.

vp(x, 0) = max
i
xi (1a)

vp(x, t) = max
a

Ea,p vp(x + r, t + 1), t < 0(1b)

Intuition

•Value of a strategy is characterized by a dynamic
program
• It is a discretization of a PDE, which captures the
leading order behavior
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Upper bound potential

A function w, nondecreasing in xi, which solves
wt + 1

2
max

q∈[−1,1]N
〈D2w · q, q〉 ≤ 0 (2a)

w(x, 0) ≥ max
i
xi (2b)

w(x + c1, t) = w(x, t) + c (2c)

•The associated player p = ∇w
•Leads to an upper bound vp ≤ w

•Bounds regret above: vp(0, T ) = maxaRT (a, p)
•Exponential weights: we(x, t) = Φ(x)− 1

2ηt
where Φ(x) = 1

η log(∑i e
ηxi) satisfies (2)

Proof of vp ≤ w: step 1

Controlling the increase of w
•Due to ∆x: (2c) implies D2w 1 = 0 and by
Taylor’s thm,

Ep,a w(x + r, t + 1)− w(x, t + 1)

≤ max
q∈[−1,1]N

1
2
〈D2w · q, q〉 [≤ η/2 for we]

where the choice of p = ∇w eliminated 1st-order
term: p · q −∇w · q = 0
•Due to ∆t:

w(x, t + 1)− w(x, t) = wt [= −η/2 for we]
•By (2a), maxa Ep,a [w(x+ r, t+ 1)]−w(x, t) ≤ 0

Proof of vp ≤ w: step 2

Show vp ≤ w by induction
• Initialization: vp(x, 0) ≤ w(x, 0) by (1a) and (2b)
•Hypothesis: vp(x + r, t + 1) ≤ w(x + r, t + 1)

w(x, t) ≥ max
a

Ep,a w(x + r, t + 1) [by step 1]
≥ max

a
Ep,avp(x + r, t + 1) [by hypothesis]

= vp(x, t) [by (1b)]
Exp: we(0, T ) = 1

η logN + 1
2η|T | =

√
2|T | logN

with η =
√

2 logN
|T |

Our contributions
•Potential-based viewpoint extends to
adversaries, leading to lower bounds
•Upper and lower regret bounds ≡ super and
sub-solutions of certain PDEs
•Guidance for new strategies/improved bounds

Lower bound potential

•Adversary a is Markovian & “balanced"
Eaqi = Eaqj
•Value function va for this adversary has a DP
characterization similar to vp
•Lower bound potential defn is similar to that of
upper bound potential—a function u which solves

ut + 1
2
Ea〈D2u · q, q〉 ≥ 0 (3a)

u(x, 0) ≤ max
i
xi (3b)

u(x + c1, t) = u(x, t) + c (3c)
•Since a is balanced, the 1st-order term is zero:

Ep,a[qI −∇u · q] = 〈p−∇u,Eaq〉 = 0
•We used ∇u · 1 = 1 by (3c) and p · 1 = 1
•u ≤ va (modulo error E from higher order terms)
•Lower bound
u(0, T )− E(T ) ≤ va(0, T ) = minpRT (a, p)

Heat-based adversary ah

•Gives best known leading-order prefactor
u(0, T ) =

√
−2κTEG maxGi where G ∼ N(0, I),

κ =


1 if N = 2
1
2 + 1

2N if N is odd
1
2 + 1

2N−2 otherwise.
•Heat-based adversary ah = Unif(S) where

S =


{
q ∈ {−1, 1}N | ∑N

i=1 qi = ±1
}

for N odd{
q ∈ {−1, 1}N | ∑N

i=1 qi = 0
}

for N even
•As lower bound potential, use the sol’n of the
heat equation with κ as above

ut + κ∆u = 0; u(x, 0) = max
i
x

Heat-based adversary ah vs. ML lit

•We provide a nonasymptotic guarantee
E(T ) = O(N

√
N ∧
√
N logN +

√
N log |T |)

•ah is asymptotically optimal for N = 2
•For large |T |, ah gives a tighter l.b. than the
previous state-of-the-art adversary as
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Figure 1:For an adversary a, CN
√
|T | ≤ minpRT (a, p), and

CN determined for |T | = 107

New max potential

•The max potential is the explicit classical sol’n of
ut + κmax

i
∂2
iu = 0;u(x, 0) = max

i
x

•Asymptotically optimal for N = 2, 3
•For small N and large |T |, max player pm
outperforms Exp
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Figure 2:For a player p, maxaRT (a, p) ≤ CN
√
|T |, and CN

determined for |T | = 107.
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