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Data set

m Consider BGK Boltzmann kinetic model in 1D:
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Here f = f(x, t,£) is a distribution function with £ € R the particle velocity, and fy
is the Maxwellian
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with - /R e, pu = /R Erde, pT = /R (¢ — v)2fde. (2)

Knudsen number: Kn=¢ = % with A mean free path, L representative physical length
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Figure 1. modeling gas dynamics

m multiply by 1, £ and £2/2, integrate over &, we derive fluid flows with the conservation
laws of mass, momentum and energy:

O+ V - (pv)
Oi(pv) + V- (pvv + P)
OE+V -(Ev+q+ Pv) —O.
Here p is the fluid density, v € RY is the velocity, E = pe + %p\v\z is the total energy

with e the specific internal energy, P is the pressure tensor, and g represents the heat
flux.

(3)

m For 1D kinetic model, we derive equation of state

p = 2pe (4)

Therefore, only heat flux g is an extra variable.

m Our goal: close (3) and discover new constitutive laws from data generated by kinetic
model (instead of empirical laws)

CDF theory

Conservation-Dissipation Formalism (CDF) [3]:

m Assume that the non-equilibrium system is governed by first-order PDEs (hyperbolic
balance laws)
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with the structure stability constrain:
(i) There is a strictly concave smooth function n = n(U), called entropy (density), such that the matrix
product nyyFjy is symmetric for each j and for all U under consideration.
(i) There is a positive definite matrix M = M(U), called dissipation matrix, such that the non-zero
source can be written as gq(U) = M(U)n,(U).

Such kind of PDEs describe a large number of irreversible processes [2]

where

m kinetic models (moment closure systems, discrete-velocity kinetic models), chemically
reactive flows/combustion, nonlinear optics, radiation hydrodynamics, compressible
non-Newtonian fluid flows...

m introduce a new dissipative variable w and postulate (concave) entropy of the form

n=n(p,pv,E,pw;e) = ps(v, e, w; ) = p(s"“V(v, e) + s"V(w; £))

Here the equilibrium entropy s°¥ is

S(GOD — 5(6q>(y7 e) — —ka/ fMln f/\/]df = kb (%h’l e + In V) + C,
R

Then we compute evolution equation of 7
n: + Ox(vn) = Ds = s,Dv + s.De + s, Dw
= pOyv + «9_1(—8Xq — pBoyv) + s, Dw
= —07'0,qg + s, Dw
= —0x(07'q) + suDw + 0,6~

with 87! :=s,. This suggests that g is entropy flux and s, Dw + gd,0~! is entropy
(ne Q)(

production. Then choose the heat flux g = s, ~(w; ) and evolution equation for w:

Or(pw) + Ox(pvw) + 0,01 = Mg
m Finally, we have the following balance laws
Op + Ox(pv)
Oe(pv) + 0 (pv + p0)
0.E + Oy (Ev + sV + phv)
O:(pw) + Ox(pvw) + 0,0~ = Ms!1e
with @ = T and the freedoms M = M(p, e, w; €) and sV = s (y; ¢).
This system satisfies the properties:

)

0
0,
0

)

m conservation-dissipation principle (globally symmetrizable hyperbolic)
m Galilean invariant

Neural networks

m We use the variables (p, pv, E, q) with g = sv(vneq)( - £) and rewrite the balance laws
(6) as
Oip + Ox(pv) = 0,
O(pv) + Ox(pv® + pb) = O,
OE + O(Ev+ q+ pv) =0, (7)
0:q + vO,q + %@9_1 = gTqu

with
g = sy ¢g) < 0.
Therefore, our task becomes to learn the negative function g = g(g; ) and the
positive function M = M(p, e, q; €).
m Here we discretize the last equation in (7) as

an+1 = q; 2AAt v'(qi1 — qi-1) QAAZZ-?(( f+1)_1 — Jn—l)_l) At (g/\pﬂq)ﬁ (8)
By writing the above equation in the abstract form
g/ = Slg, M](V}"1, V', V]'\y; At, Ax) (9)
with V = (p, v, E, q), we define our loss functlon as the mean squared error (MSE):
L= N g =S[g,M(V", V] Vi At, Ax)> (10)

training data

m neural network structure:
two fully-connected neural networks to approximate g = g(g;¢) and
M = M(p, pv, E, q; €), softplus function is used in the output layer to ensure the
positivity of M and —g

Two types of initial conditions:
m smooth: a convex combination of two Maxwellians with smooth macroscopic variables

fsmooth — O“(M(f; Ul) + (]— — a)fM(f; U2)
Here the macroscopic variables U; = (p;, v;, T;) for i = 1,2 are the sine waves
pi(x,0) = a,;isin(x +1,;)+ b,i, vi(x,0) =0, Ti(x,0)=ar;sin(x+v7;)+ b1,

m discontinuous: a convex combination of one Maxwellian with smooth macroscopic
variables and another with Riemann problem

fshock — O“(M(g; Usmooth) + (]- — CV)fM(f; Ushock)
with oo sampled from [0, 1].

Numerical results

Accuracy in testing data:
m smooth solutions: relative errors is less than 3% for smooth solutions
m discontinuous solutions: relative errors is less than 6% for discontinuous solutions
m good generalization from smooth data (training) to discontinuous data
Sod shock tube problem:
m hydrodynamic regime: ¢ = 1073
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our model agrees well with BGK model and also Euler equations.
m kinetic regime: € = 10
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our model behaves much better than Euler equations.

Conclusion

m What we have done [1]:

m develop a method for learning interpretable and thermodynamically stable PDEs based on
Conservation-dissipation Formalism

m the learned PDEs satisfy the conservation-dissipation principle automatically (hyperbolic balance
laws)

m our model achieves good accuracy in a wide range of Knudsen numbers

m good generalization from smooth data to discontinuous data

m Future work:

m add more non-equilibrium variables to achieve better accuracy
m generalization to multi-dimensional problems

References

[1] Juntao Huang, Zhiting Ma, Yizhou Zhou, and Wen-An Yong.
Learning interpretable and thermodynamically stable partial differential equations.
arXiv preprint arXiv:2009.13415, 2020.

[2] Wen-An Yong.
An interesting class of partial differential equations.
Journal of Mathematical Physics, 49(3):033503, 2008.

[3] Yi Zhu, Liu Hong, Zaibao Yang, and Wen-An Yong.
Conservation-dissipation formalism of irreversible thermodynamics.
Journal of Non-Equilibrium Thermodynamics, 40(2):67-74, 2015.



