Learning Thermodynamically Stable and Galilean Invariant PDEs for Non-equilibrium Flows

Juntao Huang¹, Zhiting Ma², Yizhou Zhou², Wen-An Yong² ¹Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA ²Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China

Problem

Consider BGK Boltz

$$\frac{\partial f}{\partial t} + \xi \frac{\partial f}{\partial x} = \frac{1}{\varepsilon} (f_M - f),$$

Here $f = f(x, t, \xi)$ is the Maxwellian

Emann kinetic model in 1D:

$$\frac{\partial f}{\partial t} + \xi \frac{\partial f}{\partial x} = \frac{1}{\varepsilon} (f_M - f), \quad (1)$$
is a distribution function with $\xi \in \mathbb{R}$ the particle velocity, and f_M
 $f_M - f_M(\xi; \rho, v, T) = \frac{\rho}{(2\pi T)^{1/2}} \exp\left(-\frac{(\xi - v)^2}{2T}\right)$
 $= \int_{\mathbb{R}} fd\xi, \quad \rho v = \int_{\mathbb{R}} \xi fd\xi, \ \rho T = \int_{\mathbb{R}} (\xi - v)^2 fd\xi. \quad (2)$
 $Kn = \varepsilon = \frac{\lambda}{\varepsilon}$ with λ mean free path, L representative physical length
 $Kn = 0.01$ $Kn = 0.1$ $Kn = 10$
flow Slip-flow regime Transient regime Free-molecular flow
regime $\xi^2/2$, integrate over ξ , we derive fluid flows with the conservation
entum and energy:
 $\xi^2/2$, integrate over ξ , we derive fluid flows with the conservation
entum and energy:
 $\partial_t \rho + \nabla \cdot (\rho v) = 0,$
 $\partial_t (\rho v) + \nabla \cdot (\rho v v + P) = 0.$ (3)
 $\partial_t E + \nabla \cdot (Ev + q + Pv) = 0.$
lensity, $v \in \mathbb{R}^d$ is the velocity, $E = \rho e + \frac{1}{2} \rho |v|^2$ is the total energy
internal energy, P is the pressure tensor, and q represents the heat
el, we derive equation of state
 $\rho = 2\rho e$ (4)
t flux q is an extra variable.
and discover new constitutive laws from data generated by kinetic
mpirical laws)
n Formalism (CDF) [3]:
n-equilibrium system is governed by first-order PDEs (hyperbolic

with

$$\rho = \int_{\mathbb{R}} fd\xi, \quad \rho \mathbf{v} = \int_{\mathbb{R}} \xi fd\xi, \quad \rho T = \int_{\mathbb{R}} (\xi - \mathbf{v})$$

Knudsen number: k scale

• multiply by 1, ξ and laws of mass, mome

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = \mathbf{0},$$

 $\partial_t (\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v} + P) = \mathbf{0},$
 $\partial_t E + \nabla \cdot (E \mathbf{v} + \mathbf{q} + P \mathbf{v}) = \mathbf{0}.$

Here ρ is the fluid de with e the specific in flux.

For 1D kinetic mode

- Therefore, only heat
- Our goal: close (3) model (instead of em

CDF theory

Conservation-Dissipation

Assume that the nor balance laws)

where

$$\partial_t U + \sum_{j=1}^a \partial_{x_j} F_j(U) = Q(U),$$

$$U = \begin{pmatrix} u \\ v \end{pmatrix}, \quad F_j(U) = \begin{pmatrix} f_j(U) \\ g_j(U) \end{pmatrix}, \quad Q(U) =$$

with the structure stability constrain:

- (i) There is a strictly concave smooth function $\eta = \eta(U)$, called entropy (density), such that the matrix
- product $\eta_{UU}F_{iU}$ is symmetric for each *j* and for all *U* under consideration. (ii) There is a positive definite matrix M = M(U), called dissipation matrix, such that the non-zero
- source can be written as $q(U) = M(U)\eta_v(U)$.
- Such kind of PDEs describe a large number of irreversible processes [2] kinetic models (moment closure systems, discrete-velocity kinetic models), chemically reactive flows/combustion, nonlinear optics, radiation hydrodynamics, compressible non-Newtonian fluid flows...

(5)

$$\begin{pmatrix} 0\\ q(U) \end{pmatrix}.$$

Our model

Here the equilibrium entropy $s^{(eq)}$ is $s^{(\mathrm{eq})} = s^{(\mathrm{eq})}(\nu, e) = -k_b \nu \int_{\mathrm{m}} f_M$ Then we compute evolution equation of η $\eta_t + \partial_x(v\eta) \equiv Ds = s_\nu D\nu + s_e De + s_w Dw$ Finally, we have the following balance laws $\partial_t E + \partial_x (Ev + s_w^{(neq)} + \rho \theta v) = 0,$

with $\theta = T$ and the freedoms $M = M(\rho, e, w; \varepsilon)$ and $s^{(neq)} = s^{(neq)}(w; \varepsilon)$. This system satisfies the properties:

- conservation-dissipation principle (globally symmetrizable hyperbolic)
- Galilean invariant

Neural networks

• We use the variables $(\rho, \rho v, E, q)$ with $q = s_w^{(neq)}(w; \varepsilon)$ and rewrite the balance laws (6) as

 $\partial_t \rho + \partial_x (\rho \mathbf{v}) = \mathbf{0},$ $\partial_t(\rho \mathbf{v}) + \partial_x(\rho \mathbf{v}^2 + \rho \theta) = \mathbf{0},$ (7) $\partial_t E + \partial_x (Ev + q + \rho \theta v) = 0,$ $\partial_t q + v \partial_x q + \frac{g}{\partial} \partial_x \theta^{-1} = \frac{g M q}{\rho}$

with

WI

$$g=s_{\scriptscriptstyle WW}^{
m (nec}$$

 $e^{\mathrm{eq})}(w;\varepsilon) < 0.$ Therefore, our task becomes to learn the negative function $g = g(q; \varepsilon)$ and the positive function $M = M(\rho, e, q; \varepsilon)$.

Here we discretize the last equation in (7) as

$$q_{j}^{n+1} = q_{j}^{n} - \frac{\Delta t}{2\Delta x} v_{j}^{n} (q_{j+1}^{n} - q_{j-1}^{n}) - \frac{\Delta t}{2\Delta x} \frac{g_{j}^{n}}{\rho_{j}^{n}} ((\theta_{j+1}^{n})^{-1} - (\theta_{j-1}^{n})^{-1}) + \Delta t (\frac{gMq}{\rho})_{j}^{n}, \quad (8)$$
By writing the above equation in the abstract form
$$q_{j}^{n+1} = S[g, M] (V_{j-1}^{n}, V_{j}^{n}, V_{j+1}^{n}; \Delta t, \Delta x) \quad (9)$$

th
$$V=(
ho,oldsymbol{v},E,oldsymbol{q})$$
, we define our loss $\mathcal{L}=\sum_{ ext{training data}}|oldsymbol{q}_j^{n+1}-\mathcal{S}[oldsymbol{g}]$

neural network structure: two fully-connected neural networks to approximate $g = g(q; \varepsilon)$ and $M = M(\rho, \rho v, E, q; \varepsilon)$, softplus function is used in the output layer to ensure the positivity of M and -g

■ introduce a new dissipative variable *w* and postulate (concave) entropy of the form $\eta = \eta(\rho, \rho \mathbf{v}, \mathbf{E}, \rho \mathbf{w}; \varepsilon) = \rho \mathbf{s}(\nu, \mathbf{e}, \mathbf{w}; \varepsilon) = \rho(\mathbf{s}^{(eq)}(\nu, \mathbf{e}) + \mathbf{s}^{(neq)}(\mathbf{w}; \varepsilon))$

$$f_{M}\ln f_{M}d\xi = k_{b}\left(rac{1}{2}\ln e + \ln
u
ight) + C,$$

 $= \rho \partial_x \mathbf{v} + \theta^{-1} (-\partial_x \mathbf{q} - \rho \theta \partial_x \mathbf{v}) + \mathbf{s}_w D \mathbf{w}$ $= -\theta^{-1}\partial_{x}q + s_{w}Dw$ $= -\partial_x(\theta^{-1}q) + s_w Dw + q\partial_x \theta^{-1}$ with $\theta^{-1} := s_e$. This suggests that $\theta^{-1}q$ is entropy flux and $s_w Dw + q \partial_x \theta^{-1}$ is entropy production. Then choose the heat flux $q = s_w^{(neq)}(w;\varepsilon)$ and evolution equation for w: $\partial_t(\rho w) + \partial_x(\rho v w) + \partial_x \theta^{-1} = Mq$ $\partial_t \rho + \partial_x (\rho \mathbf{v}) = \mathbf{0},$ $\partial_t(\rho \mathbf{v}) + \partial_x(\rho \mathbf{v}^2 + \rho \theta) = \mathbf{0},$ (6) $\partial_t(\rho w) + \partial_x(\rho v w) + \partial_x \theta^{-1} = M s_w^{(neq)}$

function as the mean squared error (MSE): $[g, M](V_{i-1}^n, V_i^n, V_{i+1}^n; \Delta t, \Delta x)|^2.$ (10)

Data set

Two types of initial conditions:

Here the macroscopic variables $U_i = (\rho_i, v_i, T_i)$ for i = 1, 2 are the sine waves

 $\rho_i(x,0) = a_{\rho,i} \sin(x + \psi_{\rho,i}) + b_{\rho,i}, \quad v_i(x,0) = 0, \quad T_i(x,0) = a_{T,i} \sin(x + \psi_{T,i}) + b_{T,i}.$

■ discontinuous: a convex combination of one Maxwellian with smooth macroscopic variables and another with Riemann problem

with α sampled from [0, 1].

Numerical results

Accuracy in testing data:

- Sod shock tube problem: • hydrodynamic regime: $\varepsilon = 10^{-3}$
- kinetic regime: $\varepsilon = 10$

our model behaves much better than Euler equations.

Conclusion

- What we have done [1]:
 - laws)
- Future work:

References

- [1] Juntao Huang, Zhiting Ma, Yizhou Zhou, and Wen-An Yong. arXiv preprint arXiv:2009.13415, 2020. [2] Wen-An Yong.
- An interesting class of partial differential equations. Journal of Mathematical Physics, 49(3):033503, 2008.
- [3] Yi Zhu, Liu Hong, Zaibao Yang, and Wen-An Yong. Conservation-dissipation formalism of irreversible thermodynamics. Journal of Non-Equilibrium Thermodynamics, 40(2):67–74, 2015.

MICHIGAN STATE UNIVERSITY

■ smooth: a convex combination of two Maxwellians with smooth macroscopic variables $f_{\text{smooth}} = \alpha f_{\mathcal{M}}(\xi; U_1) + (1 - \alpha) f_{\mathcal{M}}(\xi; U_2)$

 $f_{\rm shock} = \alpha f_{\mathcal{M}}(\xi; U_{\rm smooth}) + (1 - \alpha) f_{\mathcal{M}}(\xi; U_{\rm shock})$

 \blacksquare smooth solutions: relative errors is less than 3% for smooth solutions \blacksquare discontinuous solutions: relative errors is less than 6% for discontinuous solutions good generalization from smooth data (training) to discontinuous data

develop a method for learning interpretable and thermodynamically stable PDEs based on Conservation-dissipation Formalism

• the learned PDEs satisfy the conservation-dissipation principle automatically (hyperbolic balance

our model achieves good accuracy in a wide range of Knudsen numbers good generalization from smooth data to discontinuous data

add more non-equilibrium variables to achieve better accuracy generalization to multi-dimensional problems

Learning interpretable and thermodynamically stable partial differential equations