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Problem
Consider BGK Boltzmann kinetic model in 1D:

∂f
∂t + ξ

∂f
∂x = 1

ε
(fM − f ), (1)

Here f = f (x , t, ξ) is a distribution function with ξ ∈ R the particle velocity, and fM
is the Maxwellian

fM = fM(ξ; ρ, v ,T ) = ρ

(2πT )1/2 exp (−(ξ − v)2
2T )

with
ρ =

∫
R

fdξ, ρv =
∫
R
ξfdξ, ρT =

∫
R

(ξ − v)2fdξ. (2)

Knudsen number: Kn = ε = λ
L with λ mean free path, L representative physical length

scale

Figure 1: modeling gas dynamics

multiply by 1, ξ and ξ2/2, integrate over ξ, we derive fluid flows with the conservation
laws of mass, momentum and energy:

∂tρ +∇ · (ρv) = 0,
∂t(ρv) +∇ · (ρvv + P) = 0,

∂tE +∇ · (Ev + q + Pv) = 0.
(3)

Here ρ is the fluid density, v ∈ Rd is the velocity, E = ρe + 1
2ρ|v |

2 is the total energy
with e the specific internal energy, P is the pressure tensor, and q represents the heat
flux.
For 1D kinetic model, we derive equation of state

p = 2ρe (4)
Therefore, only heat flux q is an extra variable.
Our goal: close (3) and discover new constitutive laws from data generated by kinetic
model (instead of empirical laws)

CDF theory

Conservation-Dissipation Formalism (CDF) [3]:
Assume that the non-equilibrium system is governed by first-order PDEs (hyperbolic
balance laws)

∂tU +
d∑

j=1
∂xjFj(U) = Q(U), (5)

where

U =
(

u
v

)
, Fj(U) =

(
fj(U)
gj(U)

)
, Q(U) =

(
0

q(U)

)
.

with the structure stability constrain:
(i) There is a strictly concave smooth function η = η(U), called entropy (density), such that the matrix

product ηUUFjU is symmetric for each j and for all U under consideration.
(ii) There is a positive definite matrix M = M(U), called dissipation matrix, such that the non-zero

source can be written as q(U) = M(U)ηv(U).
Such kind of PDEs describe a large number of irreversible processes [2]

kinetic models (moment closure systems, discrete-velocity kinetic models), chemically
reactive flows/combustion, nonlinear optics, radiation hydrodynamics, compressible
non-Newtonian fluid flows...

Our model
introduce a new dissipative variable w and postulate (concave) entropy of the form

η = η(ρ, ρv ,E , ρw ; ε) = ρs(ν, e,w ; ε) = ρ(s (eq)(ν, e) + s (neq)(w ; ε))
Here the equilibrium entropy s (eq) is

s (eq) = s (eq)(ν, e) = −kbν

∫
R

fM ln fMdξ = kb

(
1
2 ln e + ln ν

)
+ C ,

Then we compute evolution equation of η
ηt + ∂x(vη) ≡ Ds = sνDν + seDe + swDw

= ρ∂xv + θ−1(−∂xq − ρθ∂xv) + swDw
= −θ−1∂xq + swDw
= −∂x(θ−1q) + swDw + q∂xθ

−1

with θ−1 := se. This suggests that θ−1q is entropy flux and swDw + q∂xθ
−1 is entropy

production. Then choose the heat flux q = s (neq)
w (w ; ε) and evolution equation for w :

∂t(ρw) + ∂x(ρvw) + ∂xθ
−1 = Mq

Finally, we have the following balance laws
∂tρ + ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv 2 + ρθ) = 0,
∂tE + ∂x(Ev + s (neq)

w + ρθv) = 0,
∂t(ρw) + ∂x(ρvw) + ∂xθ

−1 = Ms (neq)
w

(6)

with θ = T and the freedoms M = M(ρ, e,w ; ε) and s (neq) = s (neq)(w ; ε).
This system satisfies the properties:

conservation-dissipation principle (globally symmetrizable hyperbolic)
Galilean invariant

Neural networks
We use the variables (ρ, ρv ,E , q) with q = s (neq)

w (w ; ε) and rewrite the balance laws
(6) as

∂tρ + ∂x(ρv) = 0,
∂t(ρv) + ∂x(ρv 2 + ρθ) = 0,

∂tE + ∂x(Ev + q + ρθv) = 0,

∂tq + v∂xq + g
ρ
∂xθ
−1 = gMq

ρ

(7)

with
g = s (neq)

ww (w ; ε) < 0.
Therefore, our task becomes to learn the negative function g = g(q; ε) and the
positive function M = M(ρ, e, q; ε).
Here we discretize the last equation in (7) as

qn+1
j = qn

j −
∆t
2∆x v n

j (qn
j+1 − qn

j−1)−
∆t
2∆x

gn
j
ρn

j
((θn

j+1)−1 − (θn
j−1)−1) + ∆t(gMq

ρ
)n
j , (8)

By writing the above equation in the abstract form
qn+1

j = S[g ,M ](V n
j−1,V n

j ,V n
j+1; ∆t,∆x) (9)

with V = (ρ, v ,E , q), we define our loss function as the mean squared error (MSE):
L =

∑
training data

|qn+1
j − S[g ,M ](V n

j−1,V n
j ,V n

j+1; ∆t,∆x)|2. (10)

neural network structure:
two fully-connected neural networks to approximate g = g(q; ε) and
M = M(ρ, ρv ,E , q; ε), softplus function is used in the output layer to ensure the
positivity of M and −g

Data set
Two types of initial conditions:

smooth: a convex combination of two Maxwellians with smooth macroscopic variables
fsmooth = αfM(ξ; U1) + (1− α)fM(ξ; U2)

Here the macroscopic variables Ui = (ρi , vi ,Ti) for i = 1, 2 are the sine waves
ρi(x , 0) = aρ,i sin(x +ψρ,i) + bρ,i , vi(x , 0) = 0, Ti(x , 0) = aT ,i sin(x +ψT ,i) + bT ,i .

discontinuous: a convex combination of one Maxwellian with smooth macroscopic
variables and another with Riemann problem

fshock = αfM(ξ; Usmooth) + (1− α)fM(ξ; Ushock)
with α sampled from [0, 1].

Numerical results
Accuracy in testing data:

smooth solutions: relative errors is less than 3% for smooth solutions
discontinuous solutions: relative errors is less than 6% for discontinuous solutions
good generalization from smooth data (training) to discontinuous data

Sod shock tube problem:
hydrodynamic regime: ε = 10−3
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our model agrees well with BGK model and also Euler equations.
kinetic regime: ε = 10
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our model behaves much better than Euler equations.

Conclusion
What we have done [1]:

develop a method for learning interpretable and thermodynamically stable PDEs based on
Conservation-dissipation Formalism
the learned PDEs satisfy the conservation-dissipation principle automatically (hyperbolic balance
laws)
our model achieves good accuracy in a wide range of Knudsen numbers
good generalization from smooth data to discontinuous data

Future work:
add more non-equilibrium variables to achieve better accuracy
generalization to multi-dimensional problems

References
[1] Juntao Huang, Zhiting Ma, Yizhou Zhou, and Wen-An Yong.

Learning interpretable and thermodynamically stable partial differential equations.
arXiv preprint arXiv:2009.13415, 2020.

[2] Wen-An Yong.
An interesting class of partial differential equations.
Journal of Mathematical Physics, 49(3):033503, 2008.

[3] Yi Zhu, Liu Hong, Zaibao Yang, and Wen-An Yong.
Conservation-dissipation formalism of irreversible thermodynamics.
Journal of Non-Equilibrium Thermodynamics, 40(2):67–74, 2015.


