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Inverse Problem and Machine Learning

The goal of the inverse problem is to identify the values of the correctors with which the ATVI solutions can match the RANS primal
variables. The correctors are presented using a collocation approach where the values of the correctors B = [,8(1), B2y - ,BM] are specified
as a set of stations over the solution domain x4y, X(2), ..., X(ar)- Subsequently, a DAE-constrained optimization problem with the B parameter
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as the design variable is formulated for the i*! operating condition and panel deformation. From where a whole data set can be generated.
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In the field of engineering, there is always a two-model problem. On one hand, to capture the behavior of a complex physical system, one 1 ' n ~ 22
can develop models of ever-high fidelities, which comes at the cost of high computational cost, sometimes intractable. On the other hand, v Xi = X
1Op moge . '5 . ’ 51 COMp . o | k(x,x"; 1) = — \/ 2vd(x, x"; )| K, \/ 2vd(x, x"; 1) where, d(x, x';1) = Stage 4
for fast iterations in engineering design, one can only use models of lower fidelities, which results in products of sub-optimal performance. [(v)2v ;
=1
This is particularly a problem in the design of hypersonic vehicles, where the interaction between the aerodynamics, structural dynamics, " "
and heat transfer, viz. aerothermoelasticity, becomes important. The goal of our study is to develop a low computational cost but accurate Results
model for aerothermodynamics using a combined strategy of field inversion and machine learning.
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The Turbulent Viscous Inviscid Interaction model (TVI) is a simplification of the Navier-Stokes equations that involved 5 oof . g * 5 00 ¢ 5 os- { 5 \'%,: 7 v
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Simulations from RANS and TVI solutions are resolved over the computational domain given in Fig. [1], where a variety of s, e s S xm s
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. .
Correction for BL shape factor and Mach No. at BL edge The presented method enhances the predictive capability of a low-fidelity model with the augmentation of correction terms for the missing

Stage 2 physics in this model, based on a small amount of high-fidelity solutions. In the aerodynamic application, the ATVI equations significantly
outperform predictions from classical TVI equations and can therefore be used as a high-fidelity model to predict boundary layer
developments and steady pressure loads over arbitrary structural responses of a hypersonic vehicle.

* Classical integral equations that respect physics * A new DAE with unknown functions

* A system of differential-algebraic equations (DAESs)

* But misses some physics, e.g. High-temperature effects



