
Expedient Hypersonic Aerothermal Prediction for Aerothermoelastic Analysis Via
Field Inversion and Machine Learning

In the field of engineering, there is always a two-model problem. On one hand, to capture the behavior of a complex physical system, one
can develop models of ever-high fidelities, which comes at the cost of high computational cost, sometimes intractable. On the other hand,
for fast iterations in engineering design, one can only use models of lower fidelities, which results in products of sub-optimal performance.

This is particularly a problem in the design of hypersonic vehicles, where the interaction between the aerodynamics, structural dynamics,
and heat transfer, viz. aerothermoelasticity, becomes important. The goal of our study is to develop a low computational cost but accurate
model for aerothermodynamics using a combined strategy of field inversion and machine learning.

The Turbulent Viscous Inviscid Interaction model (TVI) is a simplification of the Navier-Stokes equations that involved
multiple assumptions. It consists of three coupled equations relating the primal variables 𝒚 = 𝛿∗, 𝑦" , 𝑃" , which are the
boundary layer displacement thickness (𝛿∗), the boundary layer thickness (𝑦"), and the boundary layer pressure P# .
Simulations from RANS and TVI solutions are resolved over the computational domain given in Fig. [1], where a variety of
panel deformations were considered.
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𝐦𝐩 = 𝐦𝐮 + 𝐊𝐮𝐬𝐊𝐲*𝟏(𝐲𝐬 −𝐦𝐬)
𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐯𝐞 𝐦𝐞𝐚𝐧:

𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐯𝐞 𝐜𝐨𝐯𝐚𝐫𝐢𝐚𝐧𝐜𝐞:
𝐊𝐩 = 𝐊𝐮𝐮 − 𝐊𝐮𝐬𝐊𝐲*𝟏𝐊𝐬𝐮

Gaussian Process Regression

Inverse	Problem	and	Machine	Learning
The goal of the inverse problem is to identify the values of the correctors with which the ATVI solutions can match the RANS primal
variables. The correctors are presented using a collocation approach where the values of the correctors 𝐁 = 𝛽 $ , 𝛽 % , … , 𝛽& are specified
as a set of stations over the solution domain 𝑥($), 𝑥 % , … , 𝑥(&). Subsequently, a DAE-constrained optimization problem with the 𝐁 parameter
as the design variable is formulated for the i)* operating condition and panel deformation. From where a whole data set can be generated.
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The machine learning method of choice was the Gaussian process regression (GPR) for its robustness in regression and capability to
reproduce the error estimate of the prediction. Using the data from Stage 3 as training data, these GPR models were trained to find the
correctors 𝛽+ , 𝛽, and 𝛽& for a given input. The kernel of choice for the GPRs was the Matern kernel given by,
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First-principle	modeling:	Turbulence-
Viscous	Interaction	(TVI)

*	Classical	integral	equations	that	respect	physics
*	A	system	of	differential-algebraic	equations	(DAEs)
*	But	misses	some	physics,	e.g.	High-temperature	effects
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Model	augmentation	by	Functional	correction

*	To	account	for	missing	physics.	
*	Correction	for	BL	shape	factor	and	Mach	No.	at	BL	edge
*	A	new	DAE	with	unknown	functions
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Conclusion
The presented method enhances the predictive capability of a low-fidelity model with the augmentation of correction terms for the missing
physics in this model, based on a small amount of high-fidelity solutions. In the aerodynamic application, the ATVI equations significantly
outperform predictions from classical TVI equations and can therefore be used as a high-fidelity model to predict boundary layer
developments and steady pressure loads over arbitrary structural responses of a hypersonic vehicle.
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