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Contribution: Overcome Heavy Data Noise
Data-driven PDE Identification aims at automatic PDE modeling based on experimental data. As differential
operators are unbounded, this inverse procedure is susceptible to noise. We propose an effective denoising technique
(SDD) and two model selection schemes (ST and SC) to greatly improve the stability and precision.

Problem Overview
Given a dataset U sampled from a single solution u :
[0, T )× RD → R of an evolutionary PDE

ut = F∗(u) ,

with an unknown differential operator F∗, the goal is
to find an operator F̂ based on U such that

F̂ ≈ F∗ .

Here T > 0 is the time limit of the observation; D is
the spacial dimension; and the data is noisy:

Un
i = u(xi, t

n) + εni , ε
n
i

i.i.d.∼ Normal(0, p%‖u‖2) .

In this work, we assume that F∗ is in an algebra of
polynomial differential operators over R, i.e.,

F∗(u) = c0 + c1u + c2ux + · · ·+ cmuux + · · ·

where c1, c2, · · · ∈ R can be mostly 0, and each mono-
mial is a feature variable. The data-driven PDE identi-
fication is closely related to a sparse regression or dic-
tionary learning problem:

min ‖c‖0 , subject to ‖Fc−DtU‖22 ≤ ε ,

where ε > 0, cT = (c0, c1, . . . ) is the coefficient vec-
tor, F is the feature matrix whose columns are discrete
approximations of the feature variables, and DtU is a
finite difference estimation of ut.

An Example of PDE Identification in 2D

Time t = 0 t = 0.05 t = 0.10
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Our methods handle high level of noise. From the noisy data (10%) generated by a single trajectory of
ut = 0.02uxx − uuy, both ST and SC identify the correct feature variables: uxx and uuy. The identified model is
ut = 0.0134uxx − 0.8675uuy, and the simulation errors are relatively small.
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Some Comparison
Our methods are free from post-thresholding.

True PDE
ut = −uux

0 ≤ x ≤ 1 , 0 < t ≤ 0.05
Method 0% noise

[2] ut = −0.95uux − 0.01u + · · ·
ST(20), SC(1/200) ut = −1.0013uux

1% noise
[2] ut = −0.89uux − 0.13u + · · ·

ST(20), SC(1/200) ut = −0.97uux

5% noise

[2] ut = −0.35uux + 0.09u2 + · · ·
ST(20), SC(1/200) ut = −0.98uux

Our methods are more robust against heavy noise
compared to [3] using the following metrics:

ec = ‖ĉ−c‖1
‖c‖1

er =
√

∆x∆t‖F (ĉ− c)‖2
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KdV Equation

The true PDE takes the
form ut = −6uux − uxxx.
From a dictionary of 15
terms: 1, ux, uxx, uxxx and
their pairwise products, we
identify the model ut =
−6.135uux − 1.0580uxxx.

Necessity of SDD
SDD is important for correct identification. The
true PDE is ut = −0.3ux − 0.5uux − 0.5uuy; with-
out SDD, the identified model is ut = −0.2140ux +
0.0074uyy − 0.6533uux; and with SDD, we identify
ut = −0.2599ux − 0.5513uy − 0.4434uuy. We visualize
the model difference by showing the model simulation.

Clean Noisy w.o. SDD w. SDD

For more examples, please refer to [4].

Noise Suppression by SDD
u and ũ ux and Dxũ uxx and D2

xũ
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u and SDD0
xũ ux and SDD1

xũ uxx and SDD2
xũ
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Successively Denoised Differentiation (SDD) effectively
reduces noise:

SDDl
xU := (SDx)

l SU , for integer l ≥ 0 ,

approximates the l-th order derivative of u. S is a
smooth operator, and Dx is a finite difference scheme.

ST and SC Model Selection
Subspace pursuit (SP) [1] is a sparse algorithm which
allows direct control of the `0-norm of the solution. We
propose Subspace Pursuit Time Evolution (ST)
and Subspace Pursuit Cross Validation (SC).

ST Model Selection
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