ROBUST DATA-DRIVEN PDE IDENTIFICATION FROM SINGLE NOISY TRAJECTORY
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Data-driven PDE Identification aims at automatic PDE modeling based on experimental data. As differential Time t =0 t = 0.05 t =0.10
operators are unbounded, this inverse procedure is susceptible to noise. We propose an effective denoising technique ©
(SDD) and two model selection schemes (ST and SC) to greatly improve the stability and precision. = A A
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In this work, we assume that /* is in an algebra of SDD;U = (S8D;) SU , for integer [ > 0,

polynomial differential operators over R, i.e., Our methods handle high level of noise. From the noisy data (10%) generated by a single trajectory of

approximates the [-th order derivative of u. S is a ur = 0.02uy, — uu,, both ST and SC identity the correct feature variables: wu;, and wu,. The identified model is

F(u) =co+ cru+ coug + -+ - + ey smooth operator, and D, is a finite difference scheme. us = 0.0134u,, — 0.8675uu,, and the simulation errors are relatively small.
where c1,ca, -+ € R can be mostly 0, and each mono-
mial is a feature variable. The data-driven PDE identi-
fication is closely related to a sparse regression or dic- Subspace pursuit (SP) [1] is a sparse algorithm which . " Our methods are free from post-thresholding.
. . The true PDE takes the
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where ¢ > 0, ¢!’ = (cg,c1,...) is the coefficient vec- 5[ T Space. 100 ; .then' DPallWwise products, we 2] | ug=—0.95uu,; —0.01u + - -
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= SDD is important for correct identification. The 5/0 noise
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0.0074u,, — 0.6533uu,; and with SDD, we 1identify
uy = —0.2599u, — 0.5513u,, — 0.4434uu,. We visualize
the model difference by showing the model simulation.
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For more examples, please refer to |4].

Our methods are more robust against heavy noise
compared to [3] using the following metrics:
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