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Abstract
Identifying dynamics from observed data has always been significant and chal-

lenging in a wide range of areas. The combination of linear multistep methods
(LMMs) and deep learning [2, 4, 5] is recently successfully employed to discover
dynamics, whereas a rigorous convergence analysis of this approach is still missing.
In this work, we put forward an error estimate for the deep network-based LMMs
using the approximation property of Floor-ReLU networks [3]. It indicates for cer-
tain families of LMMs, the l2 grid error is of O(hp) where h is the time step size and
p is the local truncation error order, as long as the network size is sufficiently large.
Moreover, the numerical results of some physically relevant examples are consistent
with our theory.

1 Linear Multistep Methods

Consider the following dynamical system with an initial condition

d

dt
x(t) = f (x(t)), 0 < t < T, (1)

x(0) = xinit, (2)

The linear M -multistep method is widely utilized in solving dynamical
systems. LetN > 0, h = T/N and tn = nh for n = 0, 1, · · · , N . The goal
is to compute xn ≈ x(tn). Suppose x0,x1, · · · ,xM−1 are given states,
then xn for n = M,M+1, · · · , N can be computed by the following linear
M -multistep scheme,

M∑
m=0

αmxn−m = h
M∑
m=0

βmf (xn−m), n = M,M + 1, · · · , N, (3)

Define the local truncation error τh,n as

τh,n =
1

h

M∑
m=0

αmx(tn−m)−
M∑
m=0

βmf (x(tn−m)), (4)

for n = M,M + 1, · · · , N . A LMM is said to have order p if

max
M≤n≤N

∥τh,n∥∞ = O(hp), as h → 0. (5)

Common LMM schemes include Adams-Bashforth (A-B), Adams-
Moulton (A-M), and Backwards Differentiation Formula (BDF) schemes.

2 Discovery of Dynamics

Let x(t) ∈ C∞([0, T ])d and f (z) : Rd → Rd be two vector-valued func-
tions satisfying the following dynamics

d

dt
x(t) = f (x(t)), 0 < t < T. (6)

Here both x(t) and f (z) are unknown. Now given xn = x(tn) for
n = 0, · · · , N , the objective is to determine f (z), i.e. to find a closed-form
expression for f (z) or to evaluate f (xi) for all i.
One effective approach is to build a discrete relation between xi and

f (xi) by LMMs [1], namely,

M∑
m=0

αmxn−m = h
M∑
m=0

βmfn−m, n = M,M + 1, · · · , N, (7)

where fi ∈ Rd is an approximation of f (xi).
Since the linear system (7) might have less equations than unknowns (d-

iffer by Na), We need introduce auxiliary conditions to make it uniquely

solvable. Assume the LMM has order p, one way is to compute the initial
Na unknowns by one-sided FDM of order p, i.e.,

fi =
1

h

p∑
m=0

γmxi+m, i = 0, 1, · · · , Na − 1, (8)

Combing (7) and (8) leads to a augmented linear system

Ahf⃗h = b⃗h, (9)

3 Neural Network Approximation

We introduce a network f̂ (z) ∈ NM̂ to approximate f (z), an arbitrary
component of f (z). Then it is expected from (7) and (8)

M∑
m=0

αmxn−m = h

M∑
m=0

βmf̂ (xn−m), n = M,M + 1, · · · , N, (10)

and

f̂ (xi =
1

h

p∑
m=0

γmxi+m, i = 0, 1, · · · , Na − 1, (11)

where xn for n = 0, · · · , N are given data.
Under the deep learning framework, we need to solve the optimization:

find
Ja,h(f̂M̂) = min

û∈NM̂

Ja,h(û), (12)

where

Ja,h(û) :=
1

N
(

Na−1∑
i=0

∣∣∣∣∣∣û(xi)−
1

h

p∑
m=0

γmxi+m

∣∣∣∣∣∣
2

+

N∑
n=M

∣∣∣∣∣∣
M∑
m=0

βmû(xn−m)−
M∑
m=0

h−1αmxn−m

∣∣∣∣∣∣
2

). (13)

4 Convergence

Define the l2 grid norm given h > 0,

|f |2,h :=

 1

N + 1

N∑
i=0

|f (xi)|2
1

2

,∀f ∈ C(Rd). (14)

Theorem Suppose x ∈ C∞([0, T ])d and f ∈ C(Rd)d are related by
(6). Let f be an arbitrary component of f . Also, suppose xn = x(tn)
for n = 0, · · · , N are prescribed. Then for any h > 0, there exist
J0, K0 ∈ N+ such that for all J > J0, K > K0,∣∣∣f̂M̂,h

− f
∣∣∣
2,h

< Cκ2(Ah)h
p, (15)

where C is a constant independent of h; f̂M̂,h
∈ NM̂ is a minimiz-

er of Ja,h defined by (13) corresponding to a LMM with order p, and
the admissible set NM̂ consists of all Floor-ReLU networks with sizes

M̂ = {64dK + 3,max{d, 5J + 13}}.
Specifically, if κ2(Ah) is uniformly bounded for all h > 0, then

lim
J,K→∞,h→0

∣∣∣f̂M̂,h
− f

∣∣∣
2,h

= 0. (16)

It can be shown for A-B schemes of 1 ≤ N ≤ 6 and BDF schemes of all
M , κ2(Ah) is uniformly bounded.

5 Experiments

5.1 Problem with Accurate Data

The first example is following model problem
ẋ1 = x2,

ẋ2 = −x1,

ẋ3 = 1/x22,

[x1, x2, x3]t=0 = [0, 1, 0],

t ∈ [0, 1], (17)

whose states can be explicitly given by x1 = sin(t), x2 = cos(t), x3 =
tan(t). The training error (grid error) and testing error versus width W
for various depth L are presented in Fig. 1. The error decay v.s. h are
presented for various families of LMMs in Figure 2.
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Figure 1: Errors versus W in the dynamics discovery of (17). Left: training error; Right: testing

error.
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Figure 2: Errors versus h in the dynamics discovery of (17). Left: training error; Right: testing error.

5.2 Lorenz System

The second example is following Lorenz system
ẋ1 = 10(x2 − x1),

ẋ2 = x1(28− x3)− x2,

ẋ3 = x1x2 − 8x3/3,

[x1, x2, x3]t=0 = [−8, 7, 27],

t ∈ [0, 1], (18)

The error decay v.s. h are presented for various families of LMMs in Fig-
ure 3. The dynamics of the true governing function and the approximate
neural network are also presented in Figure 4, from which we observe the
neural network can identify the chaotic dynamics effectively.
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Figure 3: Errors versus h in the dynamics discovery of (18). Left: training error; Right: testing error.
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Figure 4: The true governing function (black) and the approximate neural network (red) in the dynamics

discovery of (18).

References

[1] R. Keller and Q. Du. Discovery of Dynamics using Linear Multistep
Methods. arXiv e-prints, arXiv:1912.12728, 2019.

[2] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Multistep neural net-
works for data-driven discovery of nonlinear dynamical systems. arXiv
e-prints, arXiv:1801.01236, 2018.

[3] Z. Shen, H. Yang, and S. Zhang. Deep network with approximation
error being reciprocal of width to power of square root of depth. arXiv
e-prints, arXiv:2006.12231, 2020.

[4] R. Tipireddy, P. Perdikaris, P. Stinis, and A. Tartakovsky. A com-
parative study of physics-informed neural network models for learning
unknown dynamics and constitutive relations. arXiv e-prints, arX-
iv:1904.04058, 2019.

[5] X. Xie, G. Zhang, and C. G. Webster. Non-intrusive inference reduced
order model for fluids using deep multistep neural network. Mathemat-
ics, 7(8), 2019.


