Convergence Analysis

 of the Discovery of Dynamics via Deep Learning Yiqi Gu ${ }^{[a]}$ \& Qiang Du ${ }^{[b]}$ \& Haizhao Yang ${ }^{[c]}$ \& Chao Zhou ${ }^{[a]}$[a] Department of Mathematics, National University of Singapore
[b] Department of Applied Physics and Applied Mathematics, Columbia University
[c] Department of Mathematics, Purdue University

1 Linear Multistep Methods
Consider the following dynamical system with an initial condition

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}(t)=\boldsymbol{f}(\boldsymbol{x}(t)), \quad 0<t<T, \\
& \boldsymbol{x}(0)=\boldsymbol{x}_{\mathrm{init}},
\end{aligned}
$$

(1)
(2)

The linear M-multistep method is widely utilized in solving dynamical systems. Let $N>0, h=T / N$ and $t_{n}=n h$ for $n=0,1, \cdots, N$. The goal is to compute $\boldsymbol{x}_{n} \approx \boldsymbol{x}\left(t_{n}\right)$. Suppose $\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{M-1}$ are given states, hhen \boldsymbol{x}_{n} for $n=M, M, \boldsymbol{x}^{2}$-multistep scheme,

$$
\sum_{m=0}^{M} \alpha_{m} \boldsymbol{x}_{n-m}=h \sum_{m=0}^{M} \beta_{m} \boldsymbol{f}\left(\boldsymbol{x}_{n-m}\right), \quad n=M, M+1, \cdots, N, \quad \text { (3) }
$$

$$
\text { Define the local truncation error } \tau_{h, n} \text { as }
$$

$$
\tau_{h, n}=\frac{1}{h} \sum_{m=0}^{M} \alpha_{m} \boldsymbol{x}\left(t_{n-m}\right)-\sum_{m=0}^{M} \beta_{m} \boldsymbol{f}\left(\boldsymbol{x}\left(t_{n-m}\right)\right),
$$

for $n=M, M+1, \cdots, N$. A LMM is said to have order p if

$$
\max _{M \leq n \leq N}\left\|\boldsymbol{\tau}_{h, n}\right\|_{\infty}=O\left(h^{p}\right), \quad \text { as } h \rightarrow 0 .
$$

Common LMM schemes include Adams-Bashforth (A-B), AdamsMoulton (A-M), and Backwards Differentiation Formula (BDF) scheme

2 Discovery of Dynamics
Let $\boldsymbol{x}(t) \in C^{\infty}([0, T])^{d}$ and $\boldsymbol{f}(\boldsymbol{z}): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be two vector-valued functions satisfying the following dynamic

$$
\frac{\mathrm{d}}{\mathrm{~d} t} x(t)=f(x(t)), \quad 0<t<T .
$$

Here both $\boldsymbol{x}(t)$ and $\boldsymbol{f}(\boldsymbol{z})$ are unknown. Now given $\boldsymbol{x}_{n}=\boldsymbol{x}\left(t_{n}\right)$ for $n=0, \cdots, N$, the objective is to determine $\boldsymbol{f}(\boldsymbol{z})$, i.e. to find a closed-form expression for $\boldsymbol{f}(\boldsymbol{z})$ or to evaluate $\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)$ for all i.
One effective approach is to build a discrete relation between x_{i} and

$$
\sum_{m=0}^{M} \alpha_{m} \boldsymbol{x}_{n-m}=h \sum_{m=0}^{M} \beta_{m} \boldsymbol{f}_{n-1}
$$

where $\boldsymbol{f}_{i} \in \mathbb{R}^{d}$ is an approximation of $\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)$.
Since the linear system (7) might have less equations than unknowns (
solvable. Assume the LMM has order p, one way
V_{a} unknowns by one-sided FDM of p, one way

$$
\begin{aligned}
& f_{i}=\frac{1}{h} \sum_{m=0}^{p} \gamma_{m} x_{i+m}, \quad i=0,1, \cdots, N_{a}-1, \\
& \text { and (8) leads to a augmented linear system } \\
& \boldsymbol{A}_{h} \vec{f}_{h}=\vec{b}_{h},
\end{aligned}
$$

3 Neural Network Approximation
We introduce a network $f(\boldsymbol{z}) \in \mathcal{N}_{\mathcal{M}}$ to approximate $f(\boldsymbol{z})$, an arbitrary component of $f(z)$. Then it is expected from (7) and (8)

$$
\begin{aligned}
& \qquad \sum_{m=0}^{M} \alpha_{m} x_{n-m}=h \sum_{m=0}^{M} \beta_{m} \hat{f}\left(\boldsymbol{x}_{n-m}\right), \quad n=M, M+1, \cdots, N, \quad \text { (10) } \\
& \text { and } \\
& \qquad \hat{f}\left(\boldsymbol{x}_{i}=\frac{1}{h} \sum_{m=0}^{p} \gamma_{m} x_{i+m}, \quad i=0,1, \cdots, N_{a}-1,\right. \\
& \text { where } \boldsymbol{x}_{n} \text { for } n=0, \cdots, N \text { are given data. } \\
& \text { Under the deep learning framework, we need to solve the optimization: } \\
& \text { find } \\
& \text { where } \\
& J_{\mathrm{a}, h}\left(\hat{f}_{\hat{\mathcal{M}}}\right)=\min _{\hat{u} \in \mathcal{N}_{\mathcal{M}}} J_{\mathrm{M}, h}(\hat{u}), \\
& J_{\mathrm{a}, h}(\hat{u}):=\frac{1}{N}\left(\sum_{i=0}^{N_{a}-1}\left|\hat{u}\left(\boldsymbol{x}_{i}\right)-\frac{1}{h} \sum_{m=0}^{p} \gamma_{m} x_{i+m}\right|^{2}+\right. \\
& \left.\sum_{n=M}^{N}\left|\sum_{m=0}^{M} \beta_{m} \hat{u}\left(\boldsymbol{x}_{n-m}\right)-\sum_{m=0}^{M} h^{-1} \alpha_{m} x_{n-m}\right|^{2}\right) . \text { (13) }
\end{aligned}
$$

Experiments

5.1 Problem with Accurate Data

Theorem Suppose $\boldsymbol{x} \in C^{\infty}([0, T])^{d}$ and $\boldsymbol{f} \in C\left(\mathbb{R}^{d}\right)^{d}$ are related by (6). Let f be an arbitrary component of f. Also, suppose $\boldsymbol{x}_{n}=\boldsymbol{x}\left(t_{n}\right)$ for $n=0, \cdots, N$ are prescribed. Then for any $h>0$, there exist

$$
\begin{equation*}
\left|\hat{f}_{\hat{\mathcal{M}}, h}-f\right|_{2, h}<C \kappa_{2}\left(\boldsymbol{A}_{h}\right) h^{p} \tag{15}
\end{equation*}
$$

$$
\text { where } C \text { is a constant independent of } h ; \hat{f}_{\mathcal{M}, h} \in \mathcal{N}_{\mathcal{M}} \text { is a minimiz- }
$$ er of $J_{\text {a, }}$ defined by (13) corresponding to a LMM with order p, and $\hat{\mathcal{M}}=\{64 d K+3, \max \{d, 5, J+13\}\}$.

Specifically, if $\kappa_{2}\left(\boldsymbol{A}_{h}\right)$ is uniformly bounded for all $h>0$, then

$$
\begin{equation*}
\lim _{J, K \rightarrow \infty, h \rightarrow 0}\left|\hat{f}_{\hat{\mathcal{M}}, h}-f\right|_{2, h}=0 \tag{16}
\end{equation*}
$$

It can be shown for A-B schemes of $1 \leq N \leq 6$ and BDF schemes of all

Contact Information

The first example is following model problem

$$
\left\{\begin{array}{l}
\dot{x_{1}}=x_{2}, \\
x_{2}=-x_{1}, \\
\dot{3}_{3}=1 / x_{2}^{2}, \\
x_{1}, x_{2}, x_{2} l_{+0}=[0,1,0] .
\end{array} \quad t \in[0,\right.
$$

whose states can be explicitly given by $x_{1}=\sin (t), x_{2}=\cos (t), x_{3}=$ $\tan (t)$. The training error (grid error) and testing error versus width W presented for various families of LMMs in Figure 2.

Figure emror:

(17)

Figure e: The
discorery fof (1)

References

[1] R. Keller and Q. Du. Discovery of Dynamics using Linear Multiste Methods. arXiv e-prints, arXiv:1912.12728, 2019.
2] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Multistep neural net-
works for data-driven discovery of nonlinear dynamical systems. arX e-prints, arXiv:1801.01236, 2018
[3] Z. Shen, H. Yang, and S. Zhang. Deep network with approximation error being reciprocal of width to power of square root of depth. arXiu e-prints, arXiv:2006.12231, 2020
[4] R. Tipireddy, P. Perdikaris, P. Stinis, and A. Tartakovsky. A comparative study of physics-informed neural network models for learnin
unknown dynamics and constitutive relations, arXiv e-prints, arX unknown dynamics
iv:1904.04058, 2019
[5] X. Xie, G. Zhang, and C. G. Webster. Non-intrusive inference reduced order model for fluids using deep multistep neural network. Mathemat ics, 7(8), 2019.

