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Conventional linear reduced order modeling techniques, such as, e.g., the reduced basis method, may incur in severe limitations when
dealing with nonlinear time-dependent parametrized PDEs, featuring coherent structures that propagate over time such as transport, wave,
or convection-dominated phenomena. In this work, we propose a new, nonlinear approach relying on deep learning (DL) algorithms to
obtain accurate and efficient reduced order models (ROMs), whose dimensionality matches the number of system parameters.

Introduction
Given p € P, we aim at solving the initial value problem

up(t; p) = f(t,up(t; w); ) t€(0,7), (1)
uh(O; IL) = uO(IL)r

where P ¢ R"= is a bounded and closed set.

Reduced order modeling aims at replacing the FOM (1) by a model
showing a much lower complexity but still able to express the
physical features of the problem at hand.
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Deep learning-based reduced order models

The POD-DL-ROM approximation up(t; i, @pr, Op) of the FOM solution uy(t; )
IS given by
Un(t; 1, Opr, Op) = Vin(t; w1, Opr, Op),

where tiy(t; 1, Opr, 0p) = F(r' (t; 2, OpF); Op).

+ To describe the reduced dynamics on the nonlinear trial manifold S,
the intrinsic coordinates of the approximation uy are defined as

u,(t; ) = op' (t; 1, Opf),

where ¢,(;-,0pF) : [0,T) x R"*1 — R" is a deep feedforward neural
networR;

» to model the reduced nonlinear trial manifold SfI, we employ the de-
coder function of a convolutional autoencoder, that is,

S0 = {(E2(d2F (t; s, Ope); Op) | Un(t; 11, Op) € RY, t €[0,T), p € P C R},

where f2(-; 6p) : R" — RV,

Computing the ROM approximation consists in solving an optimization prob-
lem (in the variable 8) where the per-example loss function is given by
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Proper Orthogonal Decomposition-enhanced Deep Learning-based Reduced Order Model (POD DL-ROM)

Main features:

« POD-DL-ROMs learn, simultaneously, the nonlinear trial
manifold and the nonlinear reduced dynamics;

« the POD-DL-ROM dimension is as close as possible to the
number of parameters which the PDE solution depends upon;

« a prior dimensionality reduction, performed by means of
randomized POD, and pretraining allow to drastically reduce
training computational times.

Numerical results

Test 1: pretraining on 3D elastodynamics equations
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Test 2: cardiac electrophysiology on left ventricle and atrium
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