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Abstract
Conventional linear reduced order modeling techniques, such as, e.g., the reduced basis method, may incur in severe limitations when
dealing with nonlinear time-dependent parametrized PDEs, featuring coherent structures that propagate over time such as transport, wave,
or convection-dominated phenomena. In this work, we propose a new, nonlinear approach relying on deep learning (DL) algorithms to
obtain accurate and efficient reduced order models (ROMs), whose dimensionality matches the number of system parameters.

Reduced order modeling aims at replacing the FOM (1) by a model
showing a much lower complexity but still able to express the
physical features of the problem at hand.
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3 A Deep Learning-based Reduced Order Model (DL-ROM)

Let us now detail the construction of the proposed nonlinear ROM. In this respect, we define the functions
 h and�n in (9) and (11) by means of deep learning (DL) models, exploiting neural network architectures.
This choice is motivated by their capability of approximating nonlinear maps e↵ectively, and by their
ability to learn from data and generalize to unseen data. On the other hand, DL models enable us to
build non-intrusive, completely data-driven, ROMs, since their construction only requires to access the
dataset, the parameter values and the snapshots matrix, but not the FOM arrays appearing in (1).

The DL-ROM technique we developed is composed by two main blocks responsible, respectively, for the
reduced dynamics learning and the nonlinear trial manifold learning (see Figure 2). Hereon, we denote
by Ntrain, Ntest and Nt the number of training-parameter instances, of testing-parameter instances and
time instances, respectively, and we set Ns = Ntrain ·Nt. The dimension of both the FOM solution and
the ROM approximation is Nh, while n denotes the number of intrinsic coordinates, with n ⌧ Nh.

For the description of the system dynamics on the reduced nonlinear trial manifold (which we refer to
as reduced dynamics learning), we employ a deep feedforward neural network (DFNN) with L layers, that
is, we define the function �n in definition (11) as

�n(t;µ,✓DF ) = �DF
n (t;µ,✓DF ), (12)

thus yielding the map

(t,µ) 7! un(t;µ,✓DF ) = �DF
n (t;µ,✓DF ),

where �DF
n takes the form (30), t 2 [0, T ], and results from the subsequent composition of a nonlinear

activation function L times. Here µ 2 P ⇢ Rnµ and ✓DF denotes the vector of hyper-parameters of the
DFNN.

Regarding instead the description of the reduced nonlinear trial manifold S̃n defined in (10) (which we
refer to as reduced trial manifold learning), we employ the decoder function of a convolutional autoencoder
(AE), that is, we define the function  h appearing in (9) and (10) as

 h(un(t;µ);✓D) = f
D
h (un(t;µ);✓D), (13)

thus yielding the map

un(t;µ) 7! ũh(t;µ,✓D) = f
D
h (un(t;µ);✓D)

where f
D
h results from the composition of several layers, some of which of convolutional type, overall

depending on the vector ✓D of hyper-parameters of the decoder function.
Combining the two stages above, the DL-ROM approximation is then given by

ũh(t;µ,✓) = f
D
h (�DF

n (t;µ,✓DF );✓D) (14)

where �DF
n (·; ·,✓DF ) : R(nµ+1)

! Rn and f
D
h (·;✓D) : Rn

! RNh are defined as in (12) and (13), respec-
tively, and ✓ = (✓DF ,✓D) are the parameters defining the neural network. The architecture of DL-ROM
is shown in Figure 2.

Computing the ROM approximation (9) in the developed framework is equivalent to solve an optimiza-
tion problem. More precisely, provided the parameter matrix M 2 R(nµ+1)⇥Ns defined as

M = [(t1,µ1)| . . . |(t
Nt ,µ1)| . . . |(t

1
,µNs

)| . . . |(tNt ,µNs
)], (15)
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un(t;µ) 7! ũh(t;µ,✓D) = f
D
h (un(t;µ);✓D)

where f
D
h results from the composition of several layers, some of which of convolutional type, overall

depending on the vector ✓D of hyper-parameters of the decoder function.
Combining the two stages above, the DL-ROM approximation is then given by
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Computing the ROM approximation (14) for any new value of µ 2 P, at any given time, requires to
evaluate the map (t,µ) ! ũh(t;µ,✓) at the testing stage, once the hyper-parameters ✓ = (✓DF ,✓D) have
been determined, once and for all, during the training (and validation) stage. The training stage consists
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Computing the ROM approximation (14) for any new value of µ 2 P, at any given time, requires
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More precisely, provided the parameter matrix M 2 R(nµ+1)⇥Ns defined as

M = [(t1,µ1)| . . . |(t
Nt ,µ1)| . . . |(t

1
,µNtrain

)| . . . |(tNt ,µNtrain
)], (15)

and the snapshot matrix S, defined in (4), we solve the problem: find the optimal parameters ✓⇤

solution of

J (✓) =
1

Ns

NtrainX

i=1

NtX

k=1

L(tk,µi;✓) ! min
✓

(16)

where

L(tk,µi;✓) =
1

2
kuh(t

k;µi)� ũh(t
k;µi,✓)k

2 =
1

2
kuh(t

k;µi)� f
D
h (�DF

n (tk;µi,✓DF );✓D)k
2
. (17)

To solve the optimization problem (16)-(17) we use the ADAM algorithm [29] which is a Stochastic
Gradient Descent method [52] computing an adaptive approximation of the first and second momentum
of the gradients of the loss function. In particular, it computes exponentially weighted moving averages
of the gradients and of the squared gradients. We set the starting learning rate to ⌘ = 10�4, the batch
size to Nb = 20 and the maximum number of epochs to Nepochs = 10000. We perform cross-validation,
in order to tune the hyper-parameters of the DL-ROM, by splitting the data in training and validation
and following a proportion 8:2. Moreover, we implement an early-stopping regularization technique
to reduce overfitting [20]. In particular, we stop the training if the loss does not decrease over 500
epochs. As nonlinear activation function we employ the ELU function [14] defined as

�(z) =

(
z z � 0

exp(z)� 1 z < 0.

No activation function is applied at the last convolutional layer of the decoder neural network, as
usually done when dealing with autoencoders. The parameters, weights and biases, are initialized
through the He uniform initialization [24].

As we rely on a convolutional autoencoder to define the function  h, we also exploit the encoder
function

ũn(t;µ,✓E) = f
E
n (u(t;µ);✓E), (18)

which maps each FOM solution associated to the pairs (t;µ) 2 Col(M) provided as inputs to the
feed-forward neural network (12), onto a low-dimensional representation ũn(t;µ,✓E) depending on
the parameters vector ✓E defining the encoder function.

Indeed, the actual architecture of DL-ROM that is used only during the training and the validation
phases, but not during testing, is the one shown in Figure 3. In practice, we add to the architecture of
the DL-ROM introduced above the encoder function of the convolutional autoencoder. This produces
an additional term in the per-example loss function (17), thus calling the following optimization
problem to be solved:

min
✓

J (✓) = min
✓

1

Ns

NtrainX

i=1

NtX

k=1

L(tk,µi;✓), (19)

where

L(tk,µi;✓) =
!h

2
kuh(t

k;µi)� ũh(t
k;µi,✓DF ,✓D)k

2+
1� !h

2
kũn(t

k;µi,✓E)�un(t
k;µi,✓DF )k

2 (20)

L(t,µ;✓) =
!h

2
kuh(t;µ)� ũh(t;µ,✓DF ,✓D)k

2 +
1� !h

2
kũn(t;µ,✓E)� un(t;µ,✓DF )k

2
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ũn(t;µ,✓E) = f
E
n (u(t;µ);✓E), (18)

which maps each FOM solution associated to the pairs (t;µ) 2 Col(M) provided as inputs to the
feed-forward neural network (12), onto a low-dimensional representation ũn(t;µ,✓E) depending on
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To overcome the limitations of linear ROMs we consider a new, nonlinear ROM technique 165

based on deep learning models. First introduced in [16] and assessed on one-dimensional 166

benchmark problems, the DL-ROM technique aims at learning both the nonlinear trial 167

manifold (corresponding to the matrix V in the case of a linear ROM) in which we 168

seek the solution to the parametrized system (1) and the nonlinear reduced dynamics 169

(corresponding to the projection stage in a linear ROM). This method is non-intrusive; 170

it relies on DL algorithms trained on a set of FOM solutions obtained for different 171

parameter values. 172

We denote by Ntrain and Ntest the number of training and testing parameter instances, 173

respectively; the ROM dimension is again denoted by n ⌧ N . In order to describe the 174

system dynamics on a suitable reduced nonlinear trial manifold (a task which we refer 175

to as reduced dynamics learning), the intrinsic coordinates of the ROM approximation 176

are defined as 177

un(t; µ, ✓DF ) = �DF

n
(t; µ, ✓DF ), (8)

where �DF

n
(·; ·, ✓DF ) : R(nµ+1) ! Rn is a deep feedforward neural network (DFNN), 178

consisting in the subsequent composition of a nonlinear activation function, applied to a 179

linear transformation of the input, multiple times [34]. Here ✓DF denotes the vector of 180

parameters of the DFNN, collecting all the corresponding weights and biases of each 181

layer of the DFNN. 182

Regarding instead the description of the reduced nonlinear trial manifold, approx- 183

imating the solution one, S̃ ⇡ S (a task which we refer to as reduced trial manifold 184

learning) we employ the decoder function of a convolutional autoencoder (AE) [35,36]. 185

More precisely, S̃ takes the form 186

S̃ = {fD(un(t; µ, ✓DF ); ✓D) | un(t; µ, ✓DF ) 2 Rn, t 2 [0, T ) and µ 2 P ⇢ Rnµ} (9)

where f
D(·; ✓D) : Rn ! RN consists in the decoder function of a convolutional AE. This 187

latter results from the composition of several layers (some of which are convolutional), 188

depending upon a vector ✓D collecting all the corresponding weights and biases. 189

As a matter of fact, the approximation ũ(t; µ) ⇡ u(t; µ) provided by the DL-ROM 190

technique is defined as 191

ũ(t; µ) = f
D(�DF

n
(t; µ, ✓DF ); ✓D). (10)

The encoder function of the convolutional AE can then be exploited by mapping the 192

FOM solution associated to (t, µ) onto a low-dimensional representation 193

ũn(t; µ, ✓E) = f
E

n
(u(t; µ); ✓E), (11)

where f
E
n

(·, ✓E) : RN ! Rn is the encoder function, depending on a vector of parameters 194

✓E . 195

Computing the DL-ROM approximation of u(t; µtest), for any possible t 2 (0, T ) and 196

µtest 2 P, corresponds to the testing stage of a DFNN and of the decoder function of 197

a convolutional AE; this does not require the evaluation of the encoder function. We 198

remark that our DL-ROM strategy overcomes the three major computational bottlenecks 199

implied by the use of projection-based ROMs, since: 200

- the dimension of the DL-ROM can be kept extremely small; 201

- the time resolution required by the DL-ROM can be chosen to be larger than the 202

one required by the numerical solution of dynamical systems in cardiac electro- 203

physiology; 204
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Main features:
• POD-DL-ROMs learn, simultaneously, the nonlinear trial

manifold and the nonlinear reduced dynamics;
• the POD-DL-ROM dimension is as close as possible to the

number of parameters which the PDE solution depends upon;
• a prior dimensionality reduction, performed by means of

randomized POD, and pretraining allow to drastically reduce
training computational times.

Test 1: pretraining on 3D elastodynamics equations

Test 2: cardiac electrophysiology on left ventricle and atrium
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