Deep learning-based reduced order models for real-time approximation of nonlinear timedependent parametrized PDEs

<u>S. Fresca¹</u>, A. Manzoni¹, L. Dedè¹, A. Quarteroni^{1,2}

¹ MOX - Dipartimento di Matematica, Politecnico di Milano, Milano, Italy ⁴ MATHICSE-CSQI, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland

Abstract

Conventional linear reduced order modeling techniques, such as, e.g., the reduced basis method, may incur in severe limitations when dealing with nonlinear time-dependent parametrized PDEs, featuring coherent structures that propagate over time such as transport, wave, or convection-dominated phenomena. In this work, we propose a new, nonlinear approach relying on deep learning (DL) algorithms to obtain accurate and efficient reduced order models (ROMs), whose dimensionality matches the number of system parameters.

(1)

Introduction

Given $\mu \in \mathcal{P}$, we aim at solving the initial value problem

$$egin{cases} \dot{\mathbf{u}}_h(t; oldsymbol{\mu}) &= \mathbf{f}(t, oldsymbol{u}_h(t; oldsymbol{\mu}); oldsymbol{\mu}) & t \in (0, T), \ \mathbf{u}_h(0; oldsymbol{\mu}) &= \mathbf{u}_0(oldsymbol{\mu}), \end{cases}$$

where $\mathcal{P} \subset \mathbb{R}^{n_{\mu}}$ is a bounded and closed set.

Reduced order modeling aims at replacing the FOM (1) by a model showing a much lower complexity but still able to express the physical features of the problem at hand.

Main features:

- POD-DL-ROMs learn, simultaneously, the **nonlinear trial manifold** and the nonlinear **reduced dynamics**;
- the POD-DL-ROM dimension is as close as possible to the **number of parameters** which the PDE solution depends upon;
- a prior dimensionality reduction, performed by means of randomized POD, and pretraining allow to drastically reduce training computational times.

Numerical results

Test 1: pretraining on 3D elastodynamics equations

Deep learning-based reduced order models

The POD-DL-ROM approximation $\tilde{\mathbf{u}}_h(t; \mu, \theta_{DF}, \theta_D)$ of the FOM solution $\mathbf{u}_h(t; \mu)$ is given by

 $\tilde{\mathbf{u}}_{h}(t; \boldsymbol{\mu}, \boldsymbol{\theta}_{DF}, \boldsymbol{\theta}_{D}) = \mathbf{V}\tilde{\mathbf{u}}_{N}(t; \boldsymbol{\mu}, \boldsymbol{\theta}_{DF}, \boldsymbol{\theta}_{D}),$

where $\tilde{\mathbf{u}}_N(t; \boldsymbol{\mu}, \boldsymbol{\theta}_{DF}, \boldsymbol{\theta}_D) = \mathbf{f}_N^D(\phi_n^{DF}(t; \boldsymbol{\mu}, \boldsymbol{\theta}_{DF}); \boldsymbol{\theta}_D).$

• To describe the reduced dynamics on the nonlinear trial manifold \tilde{S}_{N}^{n} , the intrinsic coordinates of the approximation $\mathbf{\tilde{u}}_{N}$ are defined as

$$\mathbf{u}_n(t;\boldsymbol{\mu}) = \phi_n^{DF}(t;\boldsymbol{\mu},\boldsymbol{\theta}_{DF}),$$

where $\phi_n(\cdot; \cdot, \theta_{DF})$: $[0,T) \times \mathbb{R}^{n_{\mu}+1} \to \mathbb{R}^n$ is a deep feedforward neural network;

• to model the reduced nonlinear trial manifold \tilde{S}_{N}^{n} , we employ the decoder function of a convolutional autoencoder, that is,

$$\tilde{\mathcal{S}}_N^n = \{ \mathbf{f}_N^D(\phi_n^{DF}(t; \boldsymbol{\mu}, \boldsymbol{\theta}_{DF}); \boldsymbol{\theta}_D) \mid \mathbf{u}_n(t; \boldsymbol{\mu}, \boldsymbol{\theta}_{DF}) \in \mathbb{R}^n, \ t \in [0, T) \ , \ \boldsymbol{\mu} \in \mathcal{P} \subset \mathbb{R}^{n_{\mu}} \},$$

Test 2: cardiac electrophysiology on left ventricle and atrium

FOM (CPU)	POD-Galerkin ROM N _{c =} 4: train (CPU)	POD-Galerkin ROM N _{c =} 4: test (CPU)	POD DL-ROM: train (GPU)	POD DL-ROM: test (GPU)	•	N _h = 65503 N = 256	•	N _{train} = 25 N _t = 1000
3.5 h	28 h	120 s	49 m	0.25 s	•	n = 2	•	T = 0.3 s

where $\mathbf{f}_{N}^{D}(\cdot; \boldsymbol{\theta}_{D}) : \mathbb{R}^{n} \to \mathbb{R}^{N}$.

Computing the ROM approximation consists in solving an optimization problem (in the variable θ) where the **per-example loss function** is given by

 $\mathcal{L}(t^{k},\boldsymbol{\mu}_{i};\boldsymbol{\theta}) = \frac{\omega_{h}}{2} \| \mathbf{V}^{\mathsf{T}} \mathbf{u}_{h}(t^{k};\boldsymbol{\mu}_{i}) - \tilde{\mathbf{u}}_{N}(t^{k};\boldsymbol{\mu}_{i},\boldsymbol{\theta}_{DF},\boldsymbol{\theta}_{D}) \|^{2} + \frac{1-\omega_{h}}{2} \| \tilde{\mathbf{u}}_{n}(t^{k};\boldsymbol{\mu}_{i},\boldsymbol{\theta}_{E}) - \mathbf{u}_{n}(t^{k};\boldsymbol{\mu}_{i},\boldsymbol{\theta}_{DF}) \|^{2}$

Proper Orthogonal Decomposition-enhanced Deep Learning-based Reduced Order Model (POD DL-ROM

References

- S. Fresca et al. A Comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. arXiv preprint arXiv:2001.04001, 2020.
- S. Fresca et al. Deep learning-based reduced order models in cardiac electrophysiology. PLOS ONE, 15(10):1–32, 2020.
- S. Fresca et al. POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition. In preparation.
- <u>https://github.com/stefaniafresca/DL-ROM</u>

Acknowledgements

With the support of the EU ERC-ADG - Advanced Grant iHEART Project ID: 740132. e-mail: stefania.fresca@polimi.it