Workshop on Mathematical Machine Learning and Application, 14-16 December 2020, CCMA

Nonlinear Reduced Order Modelling of Parametrized PDEs
using Deep Neural Networks

POLITECNICO
MILANO 1863

Theoretical Analysis and Numerical Results

Franco N.R. [, Manzoni A. 3, Zunino P. [l

MODELING AND SCIENTIFIC COMPUTING

[a] MOX — Modeling and Scientific Computing — Department of Mathematics — Politecnico di Milano (ltaly),

Abstract. We consider the problem of approximating the parameter-to-state map of a parameter dependent PDE by means of Deep Neural Networks. The latter
is a currently active area of research, e.g. [1, 2, 3, 4, 5, 6], whose development is mainly motivated by the limitations of the classical approaches such as the
Reduced Basis method [7, 8]. In particular, these are known to encounter substantial difficulties in transport-dominated problems and under the presence of
nighly localized nonlinear terms. Here, we tackle this kind of problems by exploiting the intrinsic nonlinearity of neural networks and propose a Deep Learning
nased Reduced Order Model [9]. Our construction finds its theoretical fundations in a generalized version of the Kolmogorov n-width [10, 11].

Background and theoretical fundations

General setting

We are given a parameter space ®, a Hilbert state space H and a parametrized PDE, e.g.

—div(o () Vu(p)) + b(p) - Vu(p) = f(p) in O
u(p) =0 in 0f)

Dimensionality reduction
N;,: FOM dimension, n: ROM dimension

By their very definition, Deep Neural Networks (DNNs) introduce nonlinearities

in the model. To make the most out of it, we base our construction on generaliza-

tions of the Kolmogorov n-width.
\

and we are interested in approximating the parameter-to-state map, u — u(p). Linear projection (e.g. POD) Nonlinear reduction

> Reduced Order Modelling

Each evaluation of u can be extremely expensive: | In particular, in our case we investigate the use of

e At the base of several ROMs e Promising alternative

e Founded on the notion of Kolmogorov e Inspired to nonlinear generalizations of

n-width the Kolmogorov n-width
Full Order Models (FOM) are not suitable for the | neural networks, and propose a Deep Learning ba-

purpose. sed Reduced Order Model (DL-ROM).

DL-ROM Design
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Network architecture v - \Ij On the latent dimension
A | | The autoencoder yields a low-dimensional representation of the solution manifold
¢ Autoencoder ¥ o ¥’ with input-output | |
) y MU LY representation /I S :=A{u(u)}co C H. To obtain fast and light ROMs we set n = nnin(S), where:

dimension N}, and latent dimension n

Nmin(S) ;= min {m | 4,,(S) =0}.

e Deep Feed Forward NN ¢ with input

dimension p and output dimension n In general, even if the PDE depends on p parameters, one may have nuy,i,(S) # p.
' However,
Activation type: leaky—ReLU FOM — (2) Reconstruction
solution a o . . .
Hidden FHOM e [ Theorem 1. © compact, u Lipschitz in p = npin(S) < 2p + 1. }
The parameter-to-state map w is then o layers
approximated by ® := W o . 4 , , , , , N
Theorem 2. © compact set with nonempty interior, . continuous in
Parameters
The training is done in two stages: first the autoencoder (1), - — Nmin({ (1, u(p)) |p € © 1) = p.

N J

then we train ¢ (2). The second phase may involve ¥ as well.

Numerical Experiments Results o .
Dimensionality reduction
Below, we compare the autoencoders performance with the POD in terms on MRE (Mean Relative Error).

To make a meaningfull analysis, we compare models by taking into account their complexities. We measure

the latter in terms of dof (degrees of freedom): for the autoencoders, it is given by the number of weights

Parametrized 2D Steady Advection-Diffusion

: . . . . . d bi . for the POD, it ds to the si t'V, ie. th b f basis ti Np,. The pict
We consider a steady advection-diffusion equation on the unit square. and biases; for the POD, it corresponds to the size of V, i.e. the number of basis times Ny, e pictures

The equation depends on » = 7 scalar parameters. 4 € © ¢ R7 show the MRE decay in terms of the complexity (loglog scale).
b ’ g Y ”u . In the tables we focus on the best performing autoencoders. The latent dimension is fixed to 7. Conversely,

the reduced dimension (number of basis) needed for the POD to match/surpass the autoencoders is npop.

)
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u(p) =0 in 00 In this sense, if dof is the complexity of the network, the autoencoders yield a memory gain of 1 — N :
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We consider two separate cases: C' = 0.5 and C' = 40. &
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Data and ROM design Y e
o 1.0 -
. . . : . Training set
Training data: 9000 high-fidelty snapshots obtained using P1-FEM on a 211 x 211 mesh.
Test data: 1000 snapshots (as above). l = . | = | - . 90% =
B
Ny = 44521 AE2 7 4.62¢6  4.35% > 1000 > 90% = 20
Autoencoder architecture: latent dimension n = 7. Test set . AN -®- AE1 (Train)
' o =®= AFJ (Train}
Two alternatives are explored: AE1 reconstructs u(u) while AE2 works with (i, u(u)). | m | dof | MRE | MPOD | Memorygain | N ~e= POD (Train)
9 0 —3.0 - .. —o— AF] (Test)
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Implementation: Python 3, esp. FEniCS and Pytorch. AE2 7 4.62e6  17.70% 700 86% e —*— POD {lest)
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Refere NCEesS Approximation of the Parametric Map

Separately for each case, C' = 0.5 and C' = 40, we pick the best autoencoder in terms of Test MRE.
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