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Overview

Fast and reliable prediction of river flow velocities is important in many
applications, including flood risk management. The shallow water equa-
tions (SWEs) are commonly used for this purpose. However, traditional
numerical solvers of the SWEs are computationally expensive and require
high-resolution riverbed profile measurement (bathymetry).
In this work, we propose a two-stage process in which, first, using the
principal component geostatistical approach (PCGA) we estimate the
probability density function of the bathymetry from flow velocity mea-
surements, and then use machine learning (ML) algorithms to obtain a
fast solver for the SWEs. The fast solver uses realizations from the pos-
terior bathymetry distribution and takes as input the prescribed range of
boundary conditions (BCs). The first stage allows us to predict flow ve-
locities without direct measurement of the bathymetry. Furthermore, we
augment the bathymetry posterior distribution to a more general class of
distributions before providing them as inputs to ML algorithm in the sec-
ond stage. This allows the solver to incorporate future direct bathymetry
measurements into the flow velocity prediction for improved accuracy,
even if the bathymetry changes over time compared to its original indi-
rect estimation.
We propose and benchmark three different solvers, referred to as PCA-
DNN (principal component analysis-deep neural network), SE (supervised
encoder), and SVE (supervised variational encoder), and validate them
on the Savannah river near Augusta, GA. Our results show that the fast
solvers are capable of predicting flow velocities for different bathymetry
and BCs with good accuracy, at a computational cost that is significantly
lower than the cost of solving the full boundary value problem with tra-
ditional methods.

Savannah River, GA

In order to demonstrate the performance of the proposed methods, we applied
them to flow velocity prediction of the Savannah river, GA (Figure 1).

Figure 1: 1 mile reach of the Savannah River near Augusta, GA (left), and high-resolution
bathymetry survey by U.S. Army Corps of Engineers (USACE) (right)

Overview of the solver development

The stages to develop the fast solver is shown below. The DNN (deep neural
network) block is the fast solver. ROM is the reduced order model.

Figure 2: Stages to develop the DNN-based fast forward solver.

. PCGA (bathymetry estimation)

The first stage is the estimation of the river bathymetry from surface flow
velocity measurement through PCGA.

Figure 3: Posterior bathymetry distribution is estimated via PCGA. Left: actual bathymetry
(assumed unknown). Right: examples of bathymetries sampled from the posterior.

Augmenting posterior distribution

The second stage is posterior distribution augmentation. Its purpose is to
broaden the range of bathymetries for which the fast solver is valid, e.g.,
when the bathymetry changes over time.

Figure 4: Augmentation happens via a Gaussian kernel and a scaling factor. The scaling
factor captures the fact that the variations of the generated bathymetries near the shore are
generally smaller than in the middle of the river.

The DNN-based solvers

In the third stage, the data that are fed to DNNs are generated. The data
include bathymetries, BCs, and flow velocities. In this process, the bathyme-
tries sampled from the augmented posterior distribution and boundary con-
ditions (BCs) are input to our numerical solver, AdH (Adaptive Hydraulics),
to generate flow velocities. The fourth stage is the final stage where we train
the solvers via the generated data. The solvers are shown below.

Figure 5: We have used three solvers: PCA-DNN, SE, and SVE.

. Performances

The train/validation/test sizes are 4000, 500, and 500, respectively. Their
errors are shown below:

Figure 6: Performance of different solvers. SE/SVE perform significantly better. The
PCA-DNN with linear map is similar to PCA-DNN except DNN has linear activation
functions.

Figure 7: Example of prediction of different solvers for a test set datapoint. The error of
SE/SVE is smaller.

Performance with uncertain bathymetry

When bathymetry measurement is not available, we use posterior distribution
for velocity prediction.

Figure 8: In the absence of bathymetry measurement, bathymetries sampled from the
posterior distribution are input to DNNs and velocity distribution is obtained.

Figure 9: Example of true mean and standard deviation of velocity for a BC obtained from
the AdH (left) and the predicted mean and standard deviation based on SE for the same BC.

Conclusion

• All trainings can be done on personal CPU machines without access to
GPU.

•The fast solvers are more than three orders of magnitude faster than
numerical solvers (e.g., AdH).

•Direct bathymetry measurement not required when designing the solvers.
• Same solver can be used to predict velocity in the presence/absence of
bathymetry measurement.
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