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Abstract. We propose a data-driven approach to learn nonlocal constitutive laws for wave
propagation models. In this optimization-based technique the nonlocal kernel function is ap-
proximated via Bernstein polynomials and is such that the corresponding nonlocal solution
is as close as possible to available high-fidelity data. The optimal nonlocal kernel acts as
a homogenized continuum model that accurately reproduces wave motion in a smaller-scale
model that can include multiple materials. We apply this technique to wave propagation within
a heterogeneous bar, featuring material interfaces at the microscale.

1. Introduction and motivation

Why nonlocal models? Nonlocal models use integral operators acting on a lengthscale δ,
known as horizon. This feature allows nonlocal models to capture long-range forces at small
scales and multiscale behavior, and to reduce regularity requirements on the solutions, which
are allowed to be discontinuous or even singular.

A capability gap. Nonlocal kernels defining nonlocal operators are justified a posteriori and it
is not clear how to define such kernels to faithfully describe a physical system.

Main contributions.
• The design of an optimization technique that bridges micro and continuum scales by provid-

ing accurate and stable model surrogates for the simulation of wave propagation in hetero-
geneous materials.

• The illustration of this method via one-dimensional experiments that confirm the applicability
of our technique and the improved accuracy compared with state-of-the-art results.

• The demonstration of generalization properties of our algorithm whose associated model
surrogates are effective even on problem settings that are substantially different from the
ones used for training in terms of loading and time scales.

2. Nonlocal kernel learning

We define the high-fidelity (HF) model that faithfully represents the system: for Ω ∈ Rd and
(x, t) ∈ Ω× [0, T ]

∂2u

∂t2
(x, t)− LHF[u](x, t) = f (x, t), (1)

augmented with some boundary conditions on ∂Ω for u(x, t) and initial conditions at t = 0 for u
and ∂u/∂t.

Assumption 2.1. Solutions to the HF problem may be approximated by solutions to the follow-
ing nonlocal problem

∂2u

∂t2
(x, t)− LK [u](x, t) = f (x, t), (2)

for (x, t) ∈ Ω× [0, T ], augmented with nonlocal boundary conditions on Ωδ.

Goal. We seek LK as a nonlocal operator of the form

LK [u](x, t) =

ˆ
Ω
K(|x− y|) (u(y, t)− u(x, t)) dy, (3)

where Ω = Ω ∪ Ωδ and K is a radial, sign-changing, kernel function, compactly supported on
Bδ(x), such that the corresponding problem (2) is a good approximation of (1).

The Algorithm. We assume that we are given N pairs of forcing terms and corresponding
solutions to (1) for x ∈ Ω and t ∈ (0, Ttr]: Dtr = {(uk(x, t), fk(x, t))}Nk=1. We represent K as a
linear combination of Bernstein basis polynomials [1]:

K
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δ
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=
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Cm
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(∣∣∣∣yδ
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m

)
xm(1− x)M−m (4)

for 0 ≤ x ≤ 1 and Cm ∈ R. By construction this kernel guarantees that (2) is well-posed [2].

We approximate solutions to (2), for f = fk and the kernel function K by ūk using a central-
differencing scheme in time with time step dt, i.e.

ūn+1
k (xi) = 2ūnk(xi)− ūn−1

k (xi) + dt2
(
LK,h[ūnk ](xi) + fk(xi, t

n)
)
, (5)

where ūn+1
k (xi) represents the k-th approximate solution at time step tn+1 and at discretization

point xi, and LK,h is an approximation of LK by Riemann sum with uniform grid spacing h.

The optimal parameters are obtained by solving

min
Cm

Ttr

dt3N

N∑
k=1

Ttr/dt∑
n=1

∥∥ūn+1
k − uk(tn+1)

∥∥2
`2 +R({Cm}), (6)

s.t. ūk satisfies (5) and (7)

K satisfies physics-based constraints. (8)

Here, R(·) is a regularization term on the coefficients that improves the conditioning of the
optimization problem, and (8) depends on the physics of the problem.

3. Application to dispersion in heterogeneous materials

We consider the propagation of waves in a one-dimensional heterogeneous bar, like the one
reported in Figure 1, with an ordered microstructure. We learn a nonlocal model able to repro-
duce wave propagation on distances that are much larger than the size of the microstructure
without resolving the microscales.
The high-fidelity model we rely on is the classical wave equation and the correspond-
ing high-fidelity data are obtained with a Direct Numerical Simulation (DNS) solver.

  

Figure 1: One-dimensional bar with ordered microstructure of period 2L. Materials 1
and 2 have the same density and Young modulus E1 and E2.

High-fidelity data. We consider four types of data and use the first two for training and the
last two for validation of our algorithm. In all our experiments we set L= 0.2, E1 = 1, E2 = 0.25,
ρ=1, and the symmetric domain Ω=(−b, b).
1) Oscillating source. We set b = 50, u̇(x, 0) = u(x, 0) = 0,

f (x, t)= e−( 2x
5kL)

2

e
−
(
t−t0
tp

)2
cos2

(
2πx
kL

)
, k = 1, 2, . . . , 20, t0 = tp = 0.8.

2) Plane wave. For b = 50, f (x, t) = 0 and u(x, 0) = 0, we prescribe u̇(−b, t) = sin(ωt) for
ω = 0.35, 0.7, · · · , 3.85.
3) Wave packet. For b = 133.3, f (x, t) = 0 and u(x, 0) = 0, we prescribe u̇(−b, t) =
sin(ωt) exp(−(t/5− 3)2) for ω = 2, 3.9, 5.
4) Impact. For b =266.6, f (x, t) = 0 and u(x, 0) = 0, we prescribe u̇(x, 0) = 1 for all
x ∈ [−b,−b + 1.6] and v = 0 outside of this interval. This initial condition represents an im-
pactor hitting the bar at t = 0, generating a velocity pulse that propagates into the bar.

Training procedure. For the optimization problem (6) we choose a Tikhonov regularization of
the form R({Cm}) = ε

M+1

∑M
m=0C

2
m, where the regularization weight ε is chosen empirically.

The physics-based constraints in (8) are defined as follows and are used to explicitly prescribe
values of CM−1 and CM :

M∑
m=0

Cm

ˆ δ

0

y2

δ3
Bm,M

(
|y|
δ

)
dy = ρc2

0,

M∑
m=0

Cm

ˆ δ

0

y4

δ3
Bm,M

(
|y|
δ

)
dy = −4ρc3

0R, (9)

where ρ is the density of the bar and c0 is the effective wave speed for infinitely long wave-
lengths. For ρ = 1, it is given by c0 = (2/(1/E1 +1/E2)

1
2. 2R is the second derivative of the wave

group velocity with respect to the frequency ω evaluated at ω = 0.
Training is performed with DNS data of type 1) and 2). Parameters for the nonlocal solver and
the optimization algorithm are set to h = 0.05, dt = 0.02, Ttr = 2, δ =1.2, M = 24 and ε = 0.01.
The optimization problem (6) is solved with L-BFGS.
The optimal kernel, Kopt, is reported in Figure 2 (left). We also compute the corresponding
dispersion ω(k) and group velocity vg(ω) = dω/dk. The dispersion curve is reported in Figure
2 (center); the group velocity is reported in Figure 2 (right). We also display the group velocity
associated with an alternative, constant kernel, Kconst, obtained for the same material by the
method described in [3].
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Figure 2: Left: optimal kernel as a function of distance. Center: dispersion curve; its positivity
implies the stability of the material model. Right: group velocity for Kopt, Kconst and DNS;
these profiles show the improved accuracy of Kopt that not only matches the behavior for low
values of ω, but also catches the behavior at ω = ωbs, where a band stop occurs.

4. Validation

We test the performance of the optimal kernel Kopt on data sets of type 3) and 4): the problem
setting considered for validation has different model parameters, including the domain, than
the one used for training. These tests illustrate the excellent generalization properties of our
algorithm.

Wave packet. We consider solutions corresponding to three values of ω: ω1 = 2 < ωbs,
ω2 = 3.9 ≈ ωbs and ω3 = 5 > ωbs. Note that the latter value is beyond the band stop and,
as such, corresponds to a zero group velocity, i.e. the wave does not travel in time. In Figure
3, from left to right, we report the velocity corresponding to the computed displacement.
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Figure 3: From left to right, velocity at time t = 100, t = 320, and t = 100 for ω1, ω2, and ω3
respectively for both Kopt and DNS. Our kernel can accurately reproduce solutions of type 3)
at times larger than Ttr and for all values of ω, even larger than ωbs thanks to the accurate
agreement with the group velocity.

Impact. In Figure 4 we report the velocity profile at different time steps in correspondence of
Kopt and DNS data, displayed for comparison.
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Figure 4: Velocity for the impact problem at time T = 20 (left) and T = 600. Our optimal kernel
can accurately predict the short- and long-time wave propagation.
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