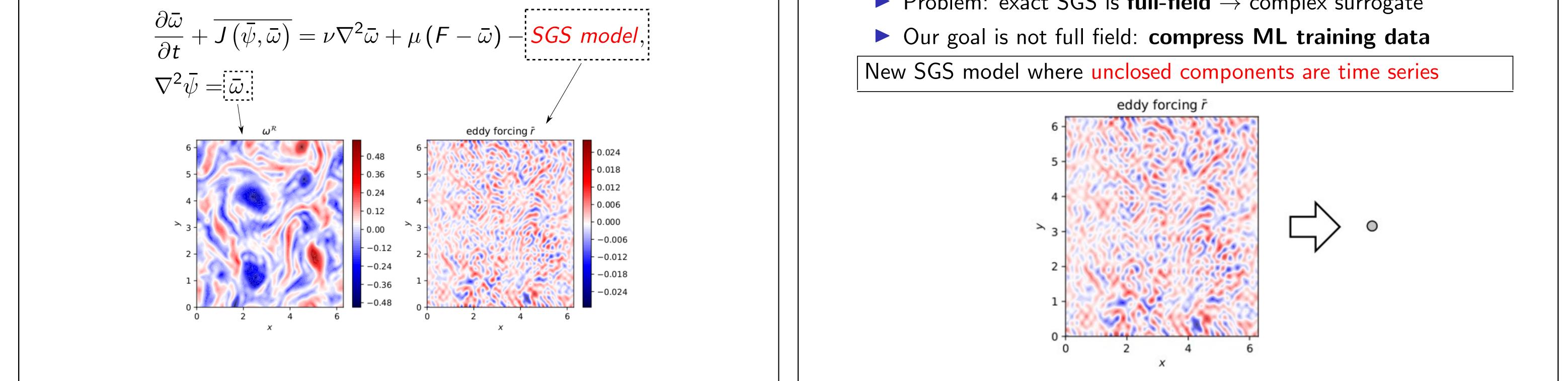
Reduced training data for dynamical systems

Wouter Edeling & Daan Crommelin

CWI Amsterdam

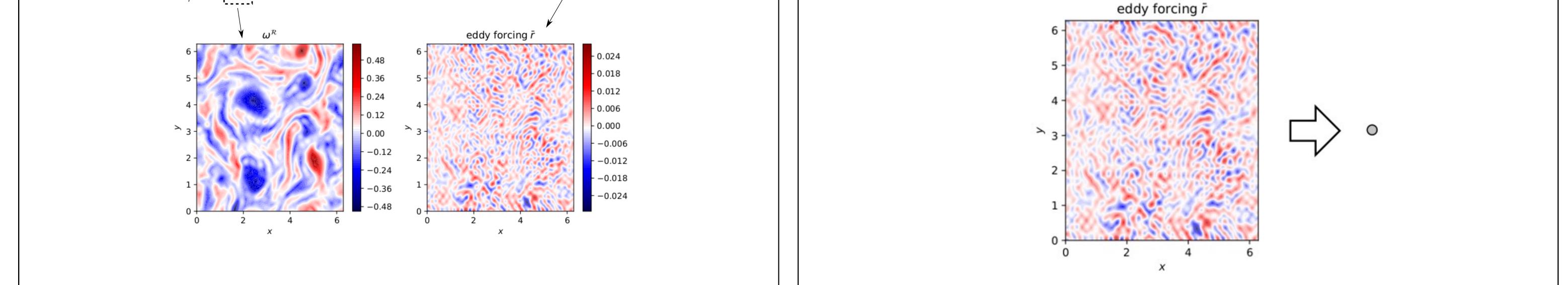
1) Multiscale governing equations

 \blacktriangleright Forced dissipative vorticity eqs, coarse-grained to 64×64 grid Coarse graining: subgrid-scale (SGS) model now required



2) Goal

- Goal: predict statistics of time series, e.g. energy E(t)
- How: machine learning of a SGS surrogate, using data from 256×256 simulation
- \blacktriangleright Problem: exact SGS is **full-field** \rightarrow complex surrogate



3) Assumptions

Our new SGS term has the following form:

Reduced SGS =
$$\sum_{i=1}^{d} \tau_i(t) P_i(x, y, t)$$
,

> and must 'track' d time-dependent quantities of interest:

4) Compute effect of assumptions

 \blacktriangleright Derive transport equation of the Q_i :

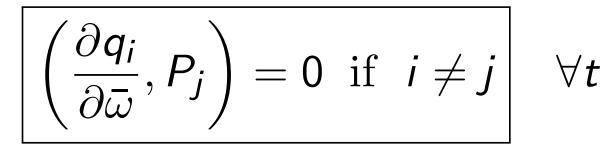
$$\frac{\mathrm{d}Q_{i}}{\mathrm{d}t} = \dots + \left(\frac{\partial q_{i}}{\partial \bar{\omega}}, \text{Reduced SGS}\right) = \dots + \sum_{i=1}^{d} \tau_{i} \left(\frac{\partial q_{i}}{\partial \omega}, P_{j}\right)$$

Every Q_i has d SGS terms: let's remove $\sum_{i=1}^{d}$ Simplify, make P_i orthogonal:

$$Q_i(t) = \left(\frac{1}{2\pi}\right)^2 \int_0^{2\pi} \int_0^{2\pi} q_i(\bar{\omega}, \bar{\psi}; x, y, t) \, \mathrm{d}x \mathrm{d}y, \quad i = 1, \cdots, d.$$

such that $Q_i^{ref}(t) - Q_i(t)$ is small $\forall t$ in training period





5) Extract τ_i from data

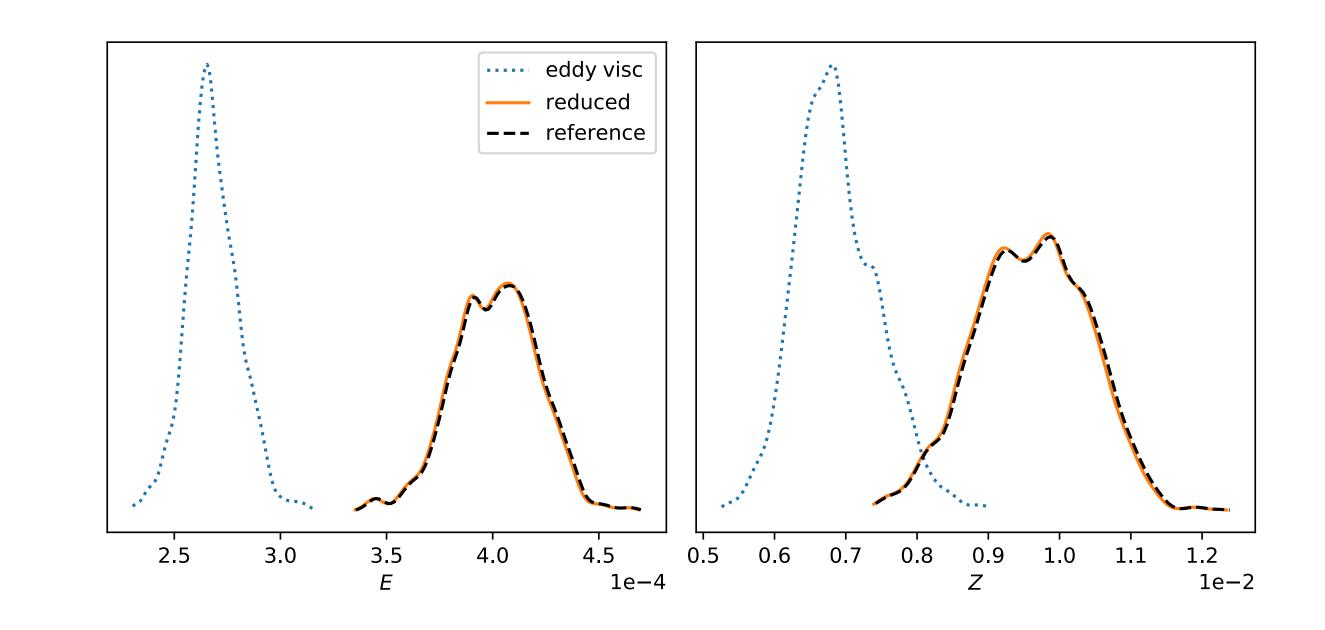
 \triangleright Due to orthogonality, transport equation of the Q_i become:

$$\frac{\mathrm{d}Q_{i}}{\mathrm{d}t} = \dots + \left(\frac{\partial q_{i}}{\partial \bar{\omega}}, \text{Reduced SGS}\right) = \dots + \tau_{i} \left(\frac{\partial q_{i}}{\partial \omega}, P_{i}\right)$$

► Goal:
$$Q_i^{ref}(t) - Q_i(t) := \Delta Q_i$$
 is small $\forall t$ in training

6) Example results

Track reference energy *E* and enstrophy Z (d = 2) $\rightarrow q_1 := \psi \omega/2$ and $q_2 = \omega \omega/2$



Simply equate SGS term to ΔQ_i :

$$T_i\left(\frac{\partial q_i}{\partial \omega}, P_i\right) = \Delta Q_i, \quad i = 1, \cdots, d$$

imposes linear relaxation towards reference

 \triangleright Reduced SGS term yields the same E & Z pdf

For every t, training data is reduced in size from 64^2 to 2

Centrum Wiskunde & Informatica

This research is funded by the Netherlands Organization for Scientific Research (NWO) through the Vidi project "Stochastic models for unresolved scales in geophysical flows", and from the European Union Horizon 2020 research and innovation programme #800925 (VECMA project).