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MOTIVATION

• Numerical problems often require fast function learning algorithms
as well as integration and interpolation from finite function evaluta-
tions.

• Application: Uncertainty Quantification (UQ)
• Consider a parametric PDE and a quantity of interest (QoI) as a func-

tional G on solution u:

A(y)u = g

f(y) = Gu(y).

• Goal: for solution u = u(y) of the PDE, approximate QoI f as a
function of y ∈ D ⊂ RD with large D.

• Observation: QoI f(y) is approximately sparse in appropriate (trun-
cated) product basis. (e.g., Fourier, Chebyshev, Legendre, etc.)

PROBLEM SETTING

• Consider a function f ∈ L2(D, µ):

f(x) :=
∑

n∈IN,d

cnTn(x)

︸ ︷︷ ︸
=:f̃

+
∑

n∈ND\IN,d

cnTn(x)

where IN,d :=
{
n ∈ [N ]D

∣∣ ‖n‖0 ≤ d}, d ≤ D, and [N ] :=
[0, 1, · · · , N − 1].

• D := ×j∈[D]Dj ⊂ RD is a space with measure µ := ⊗j∈[D]µj .
• Find the best s-term approximation f̃opts of f̃ where f̃ is a projection

of f onto BN,d :=
{
Tn(x) :=

∏
j∈[D] Tj;nj (xj)

∣∣ n ∈ IN,d}.

• BN,d is a set of bounded orthonormal product bases (BOPB) with
K := maxn∈IN,d

‖Tn‖∞.

• Goal : recover f̃opts rapidly and sample-efficiently.

MAIN THEOREM (SUBLINEARIZED COSAMP)

There exist a finite set of grid points G ⊂ D, an algorithm H : C|G| →
(IN,d × C)s, and an absolute universal constant C ∈ R+ s.t. the func-
tion a : D → C defined by a(x) :=

∑
(n,an)∈H(f(G)) anTn(x) satis-

fies

‖f − a‖L2(D,µ) ≤
∥∥∥f − f̃∥∥∥

L2(D,µ)
+

C
(√
s
∥∥c̃− c̃opts

∥∥
2

+
∥∥c̃− c̃opts

∥∥
1

+ γ
√
s
)

+ η

for all f =
∑

n∈ND cnTn with
∥∥∥f − f̃∥∥∥

∞
=: γ <∞. The grid G has

|G| = O
(
s3DK4d4 log4(DN/d) log2(s) log2(D)

)
and the algorithmH has runtime complexity

O
(
(s5 + s3N)D2K4d4 log4(DN/d) log2(s) log2(D) log

(∥∥c̃opts

∥∥
2
/η
))

SUBLINEARIZED SUPPORT IDENTIFICATION

• The following example illustrates the dimension incremental
method for the sublinearized support identification to accelerate
CoSaMP.

• r̃ := c̃− awhere a = at−1, approximation in (t− 1)-th iteration.
• Residual function h(x) :=

∑
r̃nTn(x) are updated in each loop.

NUMERICAL RESULT

·Mixed BOPB for exactly sparse case using noisy samples

·Mixed BOPB for approx. sparse case with the following test function:

f(x) = B3(x1)B3(x3)N4(x9) +B5(x4)B5(x5)N2(x2)N2(x7)

+B3(x8)N2(x6)N2(x10)

Nm: periodic B-spline of order m
Bm: (nonperiodic) shifted and dialated B-spline of order m

PSEUDOCODE OF NEW SUPPORT IDENTIFICATION

1: procedure SuppID (Alg. 2 in [5])
2: Parameters: N , D, s
3: Input: vSID ∈ Cm1m2(2D−1) containing h’s function evalua-

tions split into 2D − 1 blocks
4: Output: support set Ω̃ with |Ω̃| ≤ s
5: for j = 0→ D − 1 do

6: Estimate 1
m2

∑
k∈[m2]

∣∣∣ 1
m1

∑
`∈[m1]

(vSID,j)`,kTj;n(wj` )
∣∣∣2

for each n ∈ [N ]
7: Nj ← {n ∈ [N ] | min(s,N) largest energy estimates}
8: end for
9: TD ← N0

10: for j = 1→ D − 1 do
11: T ′D+j ← TD+j−1 ×Nj :
12: Estimate for each n ∈ T ′D+j

1
m2

∑
k∈[m2]

∣∣∣ 1
m1

∑
`∈[m1]

(vSID,D−1+j)`,kTj;n(wD−1+j
` )

∣∣∣2
13: TD,j ← {n ∈ T ′D+j |min(s, |T ′D+j |) largest energy est.}
14: end for
15: Return Ω̃← T2D−1

16: end procedure
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