Training Sparse Neural Networks using Compressed Sensing

Jonathan W. Siegel, Jianhong Chen, Jinchao Xu **Department of Mathematics, The Pennsylvania State University**

Introduction

Pruning the weights of neural networks is an effective and widely-used technique for reducing model size and inference complexity. We develop and test a novel method based on compressed sensing which combines the pruning and training into a single step. Specifically, we utilize an adaptively weighted ℓ^1 penalty on the weights during training, which we combine with momentum in order to train sparse neural networks. The adaptive weighting we introduce corresponds to a novel regularizer based on the logarithm of the absolute value of the weights. We perform a series of ablation studies demonstrating the improvement provided by the adaptive weighting and generalized RDA algorithm. Furthermore, numerical experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets demonstrate that our method

Results

We provide experimental evidence demonstrating the effectiveness of our compressed sensing based approach to training sparse neural networks.

Table 1: Unstructured sparsity results on CIFAR-10.

Model	Algorithm		Sparse	Dense / Sparse	Compression	Non-Zero
WIOdel			Top1	Parameters	Ratio	Fraction
ResNet-18	CS	95.05	94.49	11.17M / 0.14M	81x	1.23
ResNet-18	RDA He et al. (2018)	-	93.95	11.17M / 0.56M	20x	5.00
ResNet-20	CS	93.87	91.99	270K / 27K	10x	9.88
ResNet-20	Bayesian Deng et al. (2019)	93.90	91.68	270K / 27K	10x	10.00
VGG-16	CS	93.79	94.13	14.73M / 0.18M	80x	1.25
VGG-16	Momentum Dettmers & Zettlemoyer (2019)	93.41	93.31	14.73M / 0.74M	20x	5.00
VGG-16	Bayesian Louizos et al. (2017)	91.60	91.00	14.73M / 0.81M	18x	5.50
VGG-16	Var Dropout Molchanov et al. (2017)	92.70	92.70	14.73M / 0.31M	48x	2.08
VGG-16	Slimming Liu et al. (2017)	93.66	93.41	14.73M / 0.65M	22x	4.40
VGG-16	DST Junjie et al. (2019)	93.74	93.36	14.73M / 1.4M	10x	10.00
VGG-16	DST Junjie et al. (2019)	93.74	93.00	14.73M / 0.74M	20x	5.00
VGG-19	CS	93.60	94.18	20.04M / 0.19M	104x	0.97
VGG-19	Pruning Han et al. (2015b)	93.50	93.34	20.04M / 1.00M	20x	5.00
VGG-19	Scratch-B Liu et al. (2018)	93.50	93.63	20.04M / 1.00M	20x	5.00

- 1) trains sparser, more accurate networks than existing state-of-theart methods. For example, we can use less than 1% of the parameters of VGG-19 to get 94.18% test accuracy;
- can also be used effectively to obtain structured sparsity;
- can be used to train sparse networks from scratch, i.e. from a 3) random initialization, as opposed to initializing with a well-trained base model;
- acts as an effective regularizer, improving generalization accuracy. 4)

Methodology

For a neural network, we denote Θ as the collection of all parameters, \mathcal{D} as the training dataset, and

$$L(\Theta) = \frac{1}{|\mathcal{D}|} \sum_{(x,y)\in\mathcal{D}} l(x,y,\Theta)$$
(1)

as the empirical loss function.

Table 2: Unstructured sparsity results on CIFAR-100.

Model	Algorithm	Base	Sparse	Dense / Sparse	Compression	Non-Zero
	Aigonuini	Top1	Top1	Parameters	Ratio	Fraction
VGG-19	CS	73.83	75.93	20.09M / 0.46M	43x	2.30
VGG-19	Pruning Han et al. (2015b)	71.70	70.22	20.09M / 1.00M	20x	5.00
VGG-19	Scratch-B Liu et al. (2018)	71.70	72.08	20.09M / 1.00M	20x	5.00

Table 3: Results for structured (kernel) pruning on CIFAR-10.

Model	Algorithm	Base	Sparse Dense / Sparse Top1 Parameters	Compression	Non-Zero	
	Algorithm	Top1		Parameters	Ratio	Fraction
VGG-16	CS	93.79	94.24	14.73M / 0.57M	26x	3.84
VGG-16	Filter pruning Li et al. (2016)	93.25	93.40	14.73M / 5.30M	3x	36.00
VGG-16	Scratch-B Liu et al. (2018)	93.63	93.78	14.73M / 5.30M	3x	36.00

Table 4: Results for structured (channel) pruning on CIFAR-10.									
Model	Algorithm	Base	Sparse	rse Dense / Sparse Compression 01 Parameters Ratio	Non-Zero	Non-Zero			
	Algorium	Top1	Top1	Parameters	Ratio	Parameters	Channels		
		-	-			Fraction	Fraction		
VGG-19	CS	93.60	93.87	20.04M / 1.35M	15x	6.73	22.34		
VGG-19	Slimming Liu et al. (2017)	93.66	93.80	20.04M / 2.30M	9x	11.5	30.00		

The lasso, which involves adding an ℓ^1 -norm regularization to the regression loss function, is a well-known and effective method for performing sparse regression and signal estimation in compressed sensing. In the context of neural network training, this corresponds to solving

$$\arg\min_{\Theta} L(\Theta) + \lambda ||\Theta||_{1}, \qquad (2)$$

where λ is a hyperparameter controlling the trade-off between sparsity and training loss. However, it doesn't generate sparse iterates since the softthresholding parameter is very small and constant for all network parameters.

It can be considerably improved by using an adaptive ℓ^1 weight. We denote the groups of parameters G_1, \ldots, G_N where each group G_i is either weights W or bias b from a convolutional or linear layer, or is shifts $\tilde{\beta}$ or scale parameters γ from a batch normalization layer. Here N is the total number of groups. Then we weight the ℓ^1 -norm on a parameter $\theta \in G_i$ with

$$\lambda(\beta+1)(\beta+\frac{|\theta|}{M_i})^{-1},\tag{3}$$

where β and λ are hyperparameters and M_i is the maximum absolute value of all parameters in G_i , i.e. $M_i = max_{\theta \in G_i} |\theta|$. In particular, we consider a running average of the absolute values of each parameter, computed recursively

VGG-19	Scratch-B Liu et al. (2018)	93.53	93.81	20.04M / -	-	-	30.00
DenseNet-40	CS	94.19	94.10	1.09M / 428K	3x	39.35	36.66
DenseNet-40	Scratch-B Liu et al. (2018)	94.10	93.85	1.09M / -	-	-	40.00

	Table 5: Results for structured (channel) pruning on CIFAR-100.									
Model	Algorithm	Base	Sparse	Dense / Sparse	Compression	Non-Zero	Non-Zero			
WIOdel	Aigonuin	Top1	Top1	Parameters	Ratio	Parameters	Channels			
		_	_			Fraction	Fraction			
VGG-19	CS	73.83	74.64	20.10M / 4.06M	5x	20.20	44.72			
VGG-19	Slimming Liu et al. (2017)	73.26	73.48	20.08M / 5.00M	4x	24.9	50.00			
VGG-19	Scratch-B Liu et al. (2018)	72.63	73.08	20.04M / -	-	-	50.00			
DenseNet-40	CS	74.54	73.95	1.11M / 495K	2x	43.90	39.32			
DenseNet-40	Scratch-B Liu et al. (2018)	73.82	72.91	1.11M/-	-	-	40.00			

Conclusion

- We design an adaptively weighted ℓ^1 -regularization scheme which works well for training sparse neural networks. We connect this regularization scheme with a novel logarithmic regularizer, and also show how to adapt it to obtain structured sparsity.
- In order to use this scheme to train sparse neural networks, we propose 2) the use of a modified version of the regularized dual averaging (RDA) method which incorporates momentum.
- 3) We run a series of tests showing the effects of both the weighted ℓ^1 -norm and the RDA algorithm and its variants. In addition, we test the lottery ticket hypothesis on the final sparse structures obtained. Experimental results indicate that, on a variety of datasets and architectures, our method trains networks which generalize better and are significantly sparser than existing state-of-the-art methods.

according to

 $\tilde{\theta}_n^i = \mu \tilde{\theta}_{n-1}^i + (1-\mu) |\theta_n^i|.$ (4)

Here μ is a momentum parameter which effectively controls the number of iterations over which we average.

The momentum is also included in the algorithm by replacing the sampled gradient $\tilde{\nabla}L(\Theta)$ by an average over the past gradients. $v_n = \mu v_n + (1 - \mu) \tilde{\nabla} L(\Theta_n).$ (5)

We can generalize it to structured sparsity by simply replacing $M_i =$ $max_{\theta \in G_i} |\theta|$ with $M_i = max_{k_i \in G_i} |k_j|$ where the enumeration is over all the kernels for kernel sparsity and channels for channel sparsity.

Reference

Siegel, Jonathan W., Jianhong Chen, and Jinchao Xu. "Training Sparse Neural Networks using Compressed Sensing." arXiv preprint arXiv:2008.09661 (2020).