Training Sparse Neural Networks using Compressed Sensing
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We provide experimental evidence demonstrating the effectiveness of our
compressed sensing based approach to training sparse neural networks.

Introduction

Pruning the weights of neural networks 1s an effective and widely-used
technique for reducing model size and inference complexity. We develop

and test a novel method based on compressed sensing which combines the
pruning and training into a single step. Specifically, we utilize an

Table 1: Unstructured sparsity results on CIFAR-10.

1 Model Algorithm Base Sparse Dense/Sparse  Compression Non-Zerc
adaptively weighted £~ penalty on the weights during training, which we Topi  Topl Faramefers Ratio Fraction
, , , , ResNet-18 CS 95.05 94.49 1L.I7M/0.14M 81X 1.23
combine with momentum 1n order to train sparse neural networks. The ResNet-18 RDA [He et al./(2018) - 9395 11.17M/0.56M 20x 5.00
d . . h . . d d 1 1 . b d ResNet-20 CS 93.87 91.99 270K / 27K 10x 9.88
adaptive weighting we introauce corresponds to a novel regularizer base ResNet-20 Bayesian Deng et al./(2019) 0390 91.68  270K/27K 10x 10.00
1 1 ’ VGG-16 CS 93.79 94.13 14.73M/0.18M 80x 1.25
on the I.Ogarlthn:l of the abS()lut[e Value. of the WelghtS. We P erform a series VGG-16 Momentum Dettmers & Zettlemoyer (2019) 9341 9331 14.73M/0.74M 20x 5.00
of ablation studies demonstratlng the Improvement prov1ded by the VGG-16 Bayesian Louizos et al. (2017) 91.60 91.00 14.73M/0.81M 18x 5.50
. . . . . VGG-16 Var Dropout Molchanov et al. (2017) 92770 9270 14.73M/0.31M 48x 2.08
adaptive weighting and generalized RDA algorithm. VGG-16 Slimming Liu et al.[(2017) 93.66 9341 14.73M/0.65M 22x 4.40
. . VGG-16 DST Junjie et al. (2019) 03.74 93.36 14.73M / 1.4M 10x 10.00
Furthermore, numerical experiments on the CIFAR-10, CIFAR-100, and VGG-16 DST Junjie et al. (2019) 0374 93.00 14.73M/0.74M 20x 5.00
ImageNet datasets demonstrate that our method VGG-19 . CS 93.60 94.18 20.04M / 0.19M 104x 0.97
) . VGG-19 Pruning Han et al. (2015b) 03.50 93.34 20.04M/1.00M 20x 5.00
1) trains sparser, more accurate networks than existing state-of-the- VGG-19 Scratch-B Liu et al. (2018) 93.50  93.63  20.04M/1.00M 20x 5.00
art methods. For example, we can use less than 1% of the
parameters of VGG-19 to get 94.18% test accuracy, Table 2: Unstructured sparsity results on CIFAR-100.
2) can also be used effectively to obtain structured sparsity; Model Algorithm 'I%ase Sparse Dense/ Sparse  Compression  Non-Zero
. . opl  Topl Parameters Ratio Fraction
3) can be used to train sparse networks from scratch, i.e. from a VGG-19 CS 73.83  75.93  20.09M 7 0.36M I3x 330
random initialization, as opposed to initializing with a well-trained VGG-19  PrunngHanetal.|(2010b) 7170 70.22  20.09M/1.00M 20x 5.00
’ Pp 5 VGG-19  Scratch-B Liuetal. (2018) 71.70 72.08 20.09M/ 1.00M 20x 5.00
base model;
4) acts as an effective regularizer, improving generalization accuracy.
Table 3: Results for structured (kernel) pruning on CIFAR-10.
: Base Sparse Dense/Sparse  Compression Non-Zero
e Algorithm Topl  Topl Parameters Ratio Fraction
VGG-16 CS 93.79 94.24 14.73M/0.57TM 26x 3.84
Methodol VGG-16  Filter pruning Liet al. (2016) 93.25 9340 14.73M/5.30M 3x 36.00
ethodology VGG-16  Scratch-BLiuetal. (2018)  93.63 93.78 14.73M/5.30M 3x 36.00
For a neural network, we denote 0 as the collection of all parameters, D as the |
L. Table 4: Results for structured (channel) pruning on CIFAR-10.
trammg dﬂt&S@t, and Mod . Base Sparse Dense/Sparse Compression Non-Zero  Non-Zero
el Algorithm :
1 Topl  Topl Parameters Ratio Parameters Channels
L(@) = — Z(x,y)el) l(x, VY, (")) (1) Fraction Fraction
|D| VGG-19 CS 93.60 93.87 20.04M/ 1.35M 15x 6.73 22.34
as the emplrlcal IOSS functlon. VGG-19 Slimming Liuetal (2017) 93.66 03.80 20.04M / 2.30M Ox 11.5 30.00
VGG-19 Scratch-B Liu et al. (2018) 93.53  93.81 20.04M / - - - 30.00
DenseNet-40 CS 94.19 94.10 1.09M / 428K 3x 39.35 36.66
. . . . . . DenseNet-40  Scratch-B Liu et al. (2018) 94.10 93.85 1.09M / - - - 40.00
The lasso, which involves adding an £1-norm regularization to the regression
loss function, 1s a well-known and effective method for performing sparse
regression and signal estimation in compressed sensing. In the context of neural Table 5: Results for structured (channel) pruning on CIFAR-100.
. . . Model Aloorithm Base Sparse Dense/ Sparse  Compression Non-Zero  Non-Zero
network tralnmg, this COTTCSPOHdS to SOleg 8 Topl  Topl Parameters Ratio Parameters Channels
4 Fraction Fraction
| ars meL(@) + 1116l | (2) VGG-19 CS 7383 7468 20.10M/4.06M X 2020 4472
where A 1s a hyperparameter controlling the trade-off between sparsity and VGG-19 Slimming Liuetal. (2017) 7326 7348  20.08M/5.00M 4x 24.9 50.00
.. . , . . VGG-19 Scratch-B Liu et al. (2018) 72.63  73.08 20.04M / - - - 50.00
training loss. However, it doesn’t generate sparse iterates since the soft- DenseNet-40 CS 7454 7395  LIIM/495K 2 13.90 39.32
DenseNet-40  Scratch-B Liu et al. (2018) 73.82 72.91 1.L11IM/ - - - 40.00

thresholding parameter 1s very small and constant for all network parameters.

[t can be considerably improved by using an adaptive £ weight. We denote the
groups of parameters Gy, ..., Gy where each group G; 1s either weights W or
bias b from a convolutional or linear layer, or is shifts 8 or scale parameters

y from a batch normalization layer. Here N 1s the total number of groups.

Then we weight the #1-norm on a parameter 0 € G; with

Conclusion

1) We design an adaptively weighted #1-regularization scheme which works
well for training sparse neural networks. We connect this regularization

6], _, scheme with a novel logarithmic regularizer, and also show how to adapt
AL+ 1D)(F A Mi) ' (3) it to obtain structured sparsity.
where B and A are hyperparameters and M; is the maximum absolute value of 2) In order to use this scheme to train sparse neural networks, we propose

the use of a modified version of the regularized dual averaging (RDA)
method which incorporates momentum.

3) We run a series of tests showing the effects of both the weighted #1-norm
and the RDA algorithm and its variants. In addition, we test the lottery
ticket hypothesis on the final sparse structures obtained.

4) Experimental results indicate that, on a variety of datasets and
architectures, our method trains networks which generalize better and are
significantly sparser than existing state-of-the-art methods.

all parameters in G;, i.e. M; = maxgeg,|0|. In particular, we consider a running

average of the absolute values of each parameter, computed recursively
according to

O = by + (1 — )6 (4)
Here u 1s a momentum parameter which effectively controls the number of
iterations over which we average.

The momentum 1s also included 1n the algorithm by replacing the sampled
gradient VL(O) by an average over the past gradients.

Vp = pvn + (1= @)VL(y). (5)
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We can generalize 1t to structured sparsity by simply replacing M; =
maxgeg,|60] with M; = Maxy e, ‘k]-‘ where the enumeration 1s over all the

kernels for kernel sparsity and channels for channel sparsity.




