pSVGD: Projected Stein Variational Gradient Descent
A fast and scalable Bayesian inference method in high dimensions
Peng Chen and Omar Ghattas \{peng, omar\}@oden.utexas.edu

INSTITUTE

Data-informed Intrinsic Low-dimensionality

Gradient information matrix of the log-likelihood

$$
\begin{aligned}
H & =\int_{\mathbb{R}^{d}}\left(\nabla_{x} \log f(x)\right)\left(\nabla_{x} \log f(x)\right)^{T} p(x) d x \\
& \approx \sum_{m=1}^{N} \nabla_{x} \log f\left(x_{m}\right)\left(\nabla_{x} \log f\left(x_{m}\right)\right)^{T},
\end{aligned}
$$

where x_{1}, \ldots, x_{N} are adaptively updated at suitable iteration.
Given prior covariance Γ, solve generalized eigenvalue problem: $H \psi_{i}=\lambda_{i} \Gamma \psi_{i}$,

Dimension Reduction by Projection
We project the high-dimensional pamameter to the subspace $X_{r}=\operatorname{span}\left(\psi_{1}, \ldots, \psi_{r}\right)$

$$
P_{r} x:=\sum_{i=1}^{r} \psi_{i} \psi_{i}^{T} x=\Psi_{r} w, \quad \forall x \in \mathbb{R}^{d},
$$

and define a projected posterior with profile function $g\left(P_{r} x\right)$

$$
p_{r}(x):=\frac{1}{Z_{r}} g\left(P_{r} x\right) p_{0}(x) .
$$

Optimal profile function in Kullback-Leibler divergence bounded by eigenvalues

$$
g^{*}\left(P_{r} x\right)=\int_{X_{\perp}} f\left(P_{r} x+\xi\right) p_{0}^{\perp}\left(\xi \mid P_{r} x\right) d \xi \Longrightarrow D_{\mathrm{KL}}\left(p \mid p_{r}\right) \geq D_{\mathrm{KL}}\left(p \mid p_{r}^{*}\right) \leq \frac{\gamma}{2} \sum_{i=r+1}^{d} \lambda_{i},
$$

where the conditional/marginal density in complement subspace X_{\perp}
$p_{0}^{\perp}\left(\xi \mid P_{r} x\right)=p_{0}\left(P_{r} x+\xi\right) / p_{0}^{r}\left(P_{r} x\right)$ with $p_{0}^{r}\left(P_{r} x\right)=\int_{X_{\perp}} p_{0}\left(P_{r} x+\xi\right) d \xi$.

SVGD

4,5
40, ex.

Bayes' rule for projection coefficient $w \in \mathbb{R}^{r}$ in data-informed dominant subspaces

$$
\underbrace{\pi(w)}_{\text {posterior }}=\frac{1}{Z_{w}} \underbrace{g\left(\Psi_{r} w\right)}_{\text {likelihood }} \underbrace{\pi_{0}(w)}_{\text {prior }}
$$

SVGD update for prior samples $w_{1}^{0}, \ldots, w_{N}^{0}$

$$
w_{m}^{\ell+1}=w_{m}^{\ell}+\epsilon_{l} \hat{\phi}_{\ell}^{*}\left(w_{m}^{\ell}\right), \quad m=1, \ldots, N, \ell=0,1, \ldots
$$

where $\hat{\phi}_{t}^{*}\left(w_{m}^{\ell}\right)$ is the approximate steepest direction

$$
\hat{\phi}_{t}^{*}\left(w_{m}^{\ell}\right)=\frac{1}{N} \sum_{n=1}^{N} \nabla_{w_{n}^{\ell}} \log \pi\left(w_{n}^{\ell}\right) k_{r}\left(w_{n}^{\ell}, w_{m}^{\ell}\right)+\nabla_{w_{n}^{t}} k_{r}\left(w_{n}^{\ell}, w_{m}^{\ell}\right),
$$

where $k_{r}(\cdot, \cdot)$ is the projected kernel in $\mathbb{R}^{r}, \nabla_{w} \log \pi(w)=\Psi_{r}^{T} \nabla_{x} \log p_{r}\left(P_{r} x\right)$

PDE model with random field $\mathrm{x} \in \mathscr{N}(0, \mathscr{C}), \mathscr{C}=(-0.1 \Delta+I)^{-2}$

$$
-\nabla \cdot\left(e^{\mathrm{x}} \nabla \mathrm{u}\right)=0, \quad \text { in }(0,1)^{2} .
$$

ODE model with stochastic process $g_{i}(t) \in \mathcal{N}\left(g_{i}^{*}, \mathscr{C}_{g}\right), \mathscr{C}_{g}=\left(-s_{g} \Delta_{t}+s_{I} I\right)^{-1}$

$$
\alpha_{i}(t)=\frac{1}{2}\left(\tanh \left(g_{i}(t)\right)+1\right)
$$

Experiment II: Inference of COVID-19

P. Chen, K. Wu, O. Ghattas. Bayesian inference of heterogeneous epidemic models: Application to covid-19 spread accounting for Iong-term care facilities. ar大iv:2011.01058, 2020.

