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Abstract

We present a data-driven method to learn unknown parameterized dynamical system from mea-

surement of states of the system. And we apply it in uncertainty quantification (UQ).

Method based on deep neural network (DNN).

Do system prediction over long time for arbitrary parameter values.

UQ analysis by evaluating solution statistics over parameter space.

Problem Setup

Consider an unknown parameterized system

d

dt
x(t; α) = f(x, α)

where x ∈ Rd is state variable and α ∈ Rl are system parameters. We are interested in the

solution behavior with respect to varying parameters. In UQ setting, parameters are random

variables and equipped with a probability measure.

Assumptions

Form of equation f(x, α) : Rd × Rl −→ Rd is unknown.

Trajectories of data is available, {x(t(i); α(i), x(i)
0 ), xi

0}.

Goals

We want to approximate the flow map using DNN.

x(t; α, x0) = Φt(x0, α)
which can be written as

x(t; α, x0) = x0 +
∫ t

0
f(Φs(x0; α))ds

In UQ setting, we want to use trained model to do uncertainty quantification analysis.

Method

First we present our neural network structure, then we talk about application for uncertainty

quantification.

Neural Network Model ConstructionWe define network model as

x̃(t; α, x0) := x0 + N(x0, α, t; Θ)
where N(; Θ) is a fully-connected neural network, Θ is its parameter set.

This can be considered as a exact time integrator in term of flow map.

x(t; α, x0) = x0 +
∫ t

0
f(Φs(x0; α))ds

Define loss function

L(Θ) := 1
Ndata

Ndata∑
i=1

∥∥∥x(i)
0 + N(x(i)

0 , α(i), t(i); Θ) − x(i)(t(i); α(i), x(i)
0 )

∥∥∥2

2

Prediction and Uncertainty Quantification

Once the model is constructed, we can do prediction by using the model iteratively and do un-

certainty quantification analysis over parameter space.

Prediction

Given an initial condition x0, a time sequence {tk}, and a system parameter α.

Define x̃(t0; α) = x0, for k = 0, ...

x̃(tk+1; α) = x̃(tk; α) + N(x̃(tk; α), α, tk+1 − tk; Θ∗)

Uncertainty Quantification

Consider random variable α ∈ Iα, with density function ρα.

Obtain statistical information of surrogate model. For example,

Eα[x(t; α)] ≈ Eα[x̃(t; α)] =
∫

Iα

x̃(t; y)ρα(y)dy

Varα[x(t; α)] ≈ Varα[x̃(t; α)] =
∫

Iα

[x̃(t; y) − Eα[x̃(t; y)]]2 ρα(y)dy

Illustration Example: Cell Signaling Cascade

Consider the mathematical model for autocrine cell-signaling loop. e1p, e2p, and e3p denote the

concentrations of the enzymes.

de1p

dt
= I

1 + Ge3p

Vmax,1
(
1 − e1p

)
Km,1 +

(
1 − e1p

) −
Vmax,2e1p

Km,2 + e1p

de2p

dt
=

Vmax,3e1p
(
1 − e2p

)
Km,3 +

(
1 − e2p

) −
Vmax,4e2p

Km,4 + e2p

de3p

dt
=

Vmax,5e2p
(
1 − e3p

)
Km,5 +

(
1 − e3p

) −
Vmax,6e3p

Km,6 + e3p

This model contains 13 (random) parameters. The parameter space is high-dimensional and

this is challenging for most existing methods.

A parameter of particular interest is I, the tuning parameter. It affects the steady state solution.

Sampling Data and Training

Sample initial conditions/state variables uniformly from [0, 1]3.
Sample parameters independently and uniformly from a hypercube of ±10% around

Km,1−6 = 0.2, Vmax,1 = 0.5, Vmax,2 = 0.15, Vmax,3 = 0.15, Vmax,5 = 0.25, Vmax,6 = 0.05,
Vmax,4 = 0.15, and G = 2.
For each initial condition and parameter, obtain 1 time step trajectory data.

Train using FNN with 3 layers and 200 nodes each layer. Data set of size 300, 000.

Prediction and UQ Analysis

Given initial condition x0 = (0.22685145, 0.98369158, 0.87752945) and time march forward

1, 400 steps.

Calculate the mean and variance of the state variables with respect to the random parameters

Km,1, Km,4, Vmax,2, and Vmax,5.

Plot response curve of e3p steady state with respect to the tuning parameter I .

Figure 1:Mean and variance of concentrations (left) and steady state response curve of e3p to I (right).

Extension to Non-Autonomous Dynamical Systems

We extend our method [1] which learn autonomous systems with (uncertain) time-invariant pa-

rameters to learning non-autonoumous systems with time-dependent parameters [2].

d

dt
x(t) = f(x, α(t))

Solution states of non-autonomous system depend on the entire history of the system, this

renders most data-driven method inapplicable.

Figure 2:Heat equation with discontinuous time-dependent source term, model trained with smoot
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