

Abstract

We develop data-driven methods for incorporating physical **information** for priors to learn parsimonious representations of nonlinear systems arising from parameterized PDEs and mechanics.

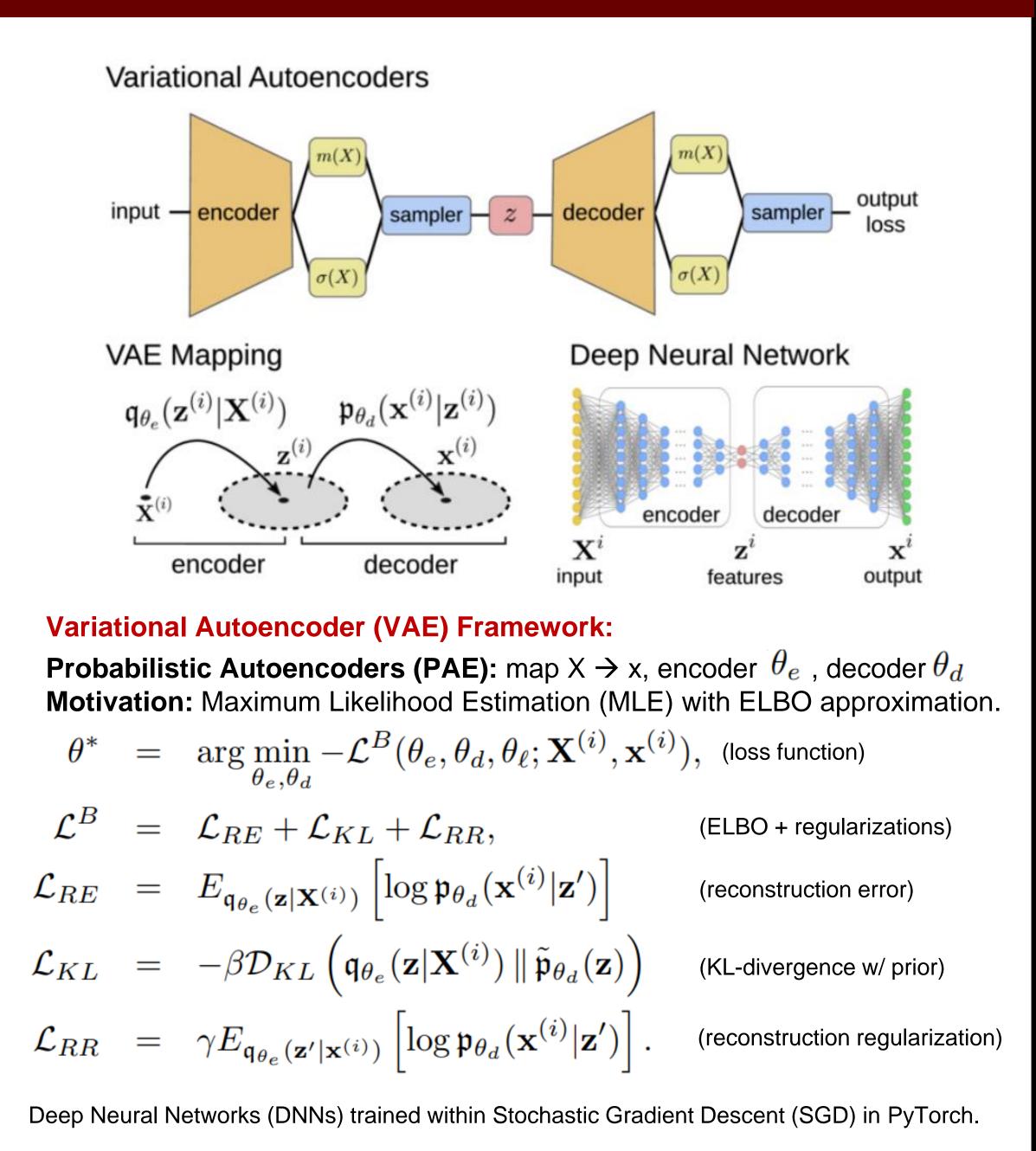
Our approach is based on Variational Autoencoders (VAEs) for learning from observations **nonlinear state space models**. We incorporate geometric and topological priors through general manifold latent space representations.

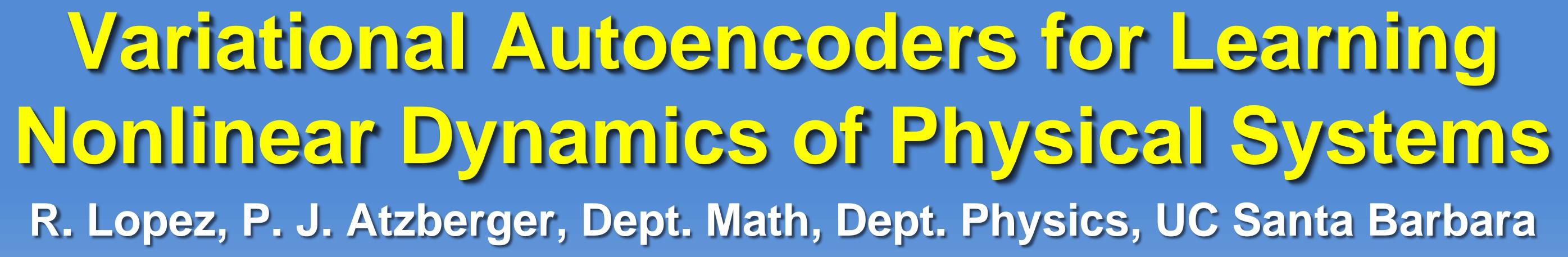
We give results for **low dimensional representations** for the nonlinear Burgers equation and constrained mechanical systems.

Acknowledgements

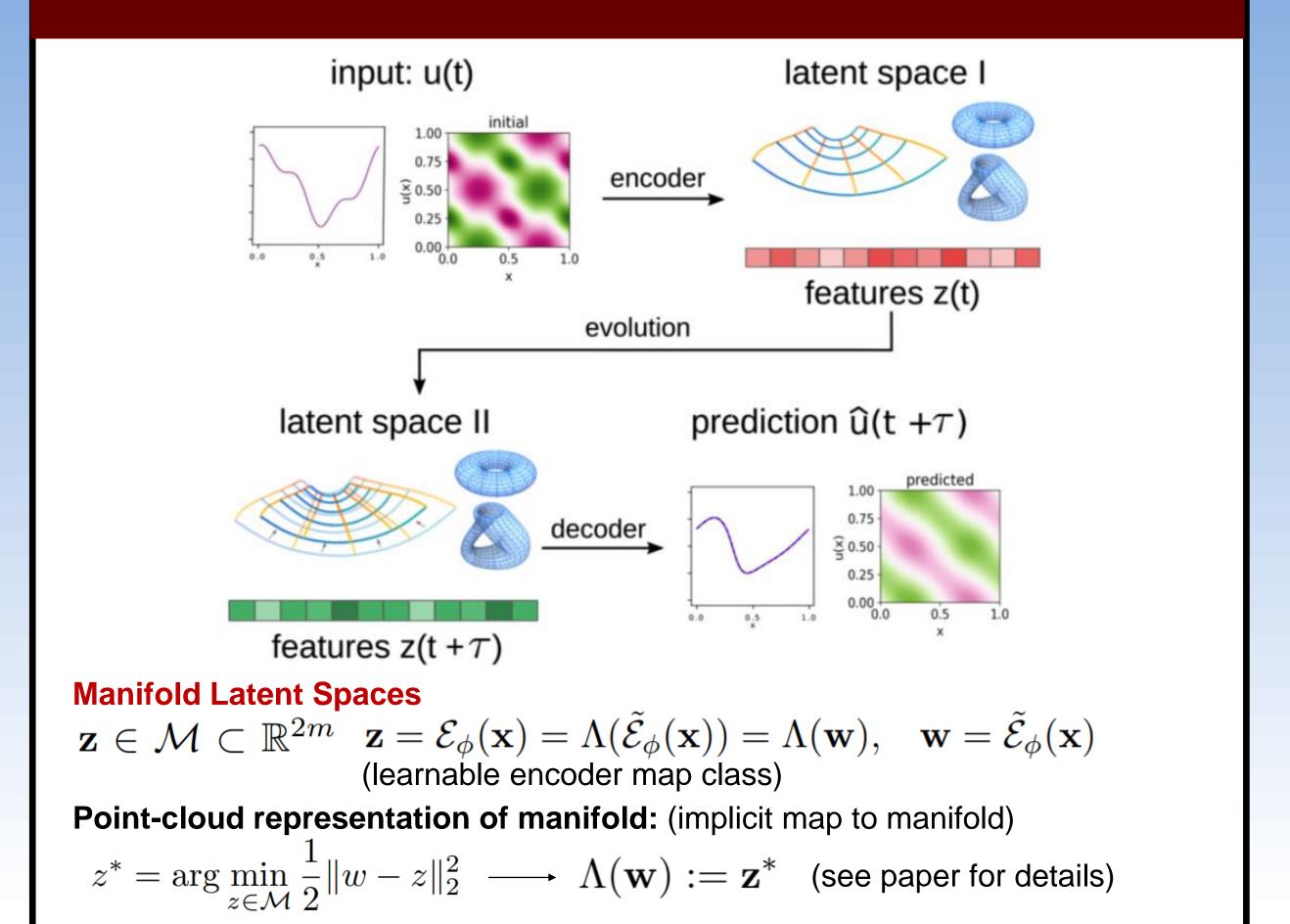
DE-SC0019246

Variational Autoencoders for Dynamics

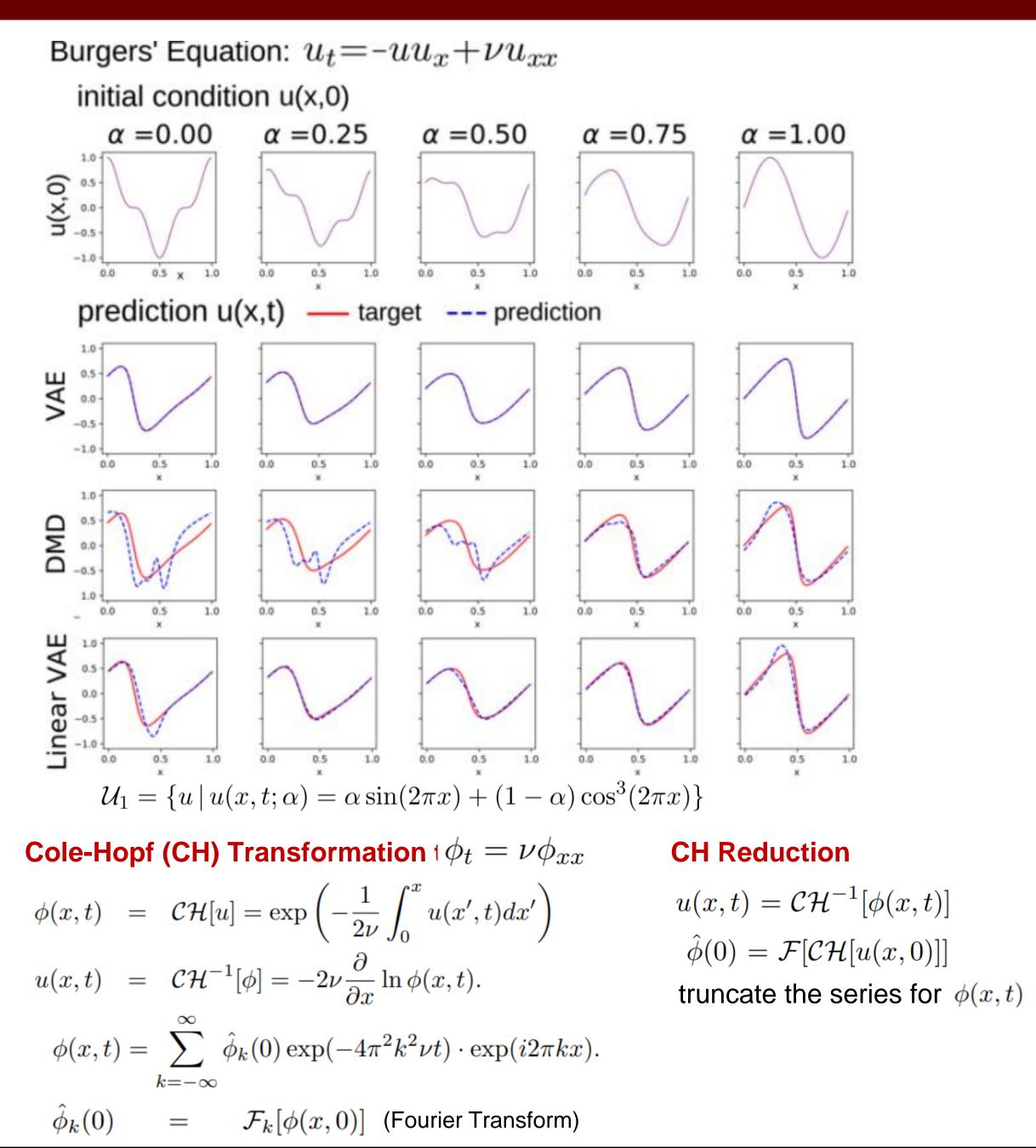




Latent Variable Representations **Geometric / Topologic Priors**

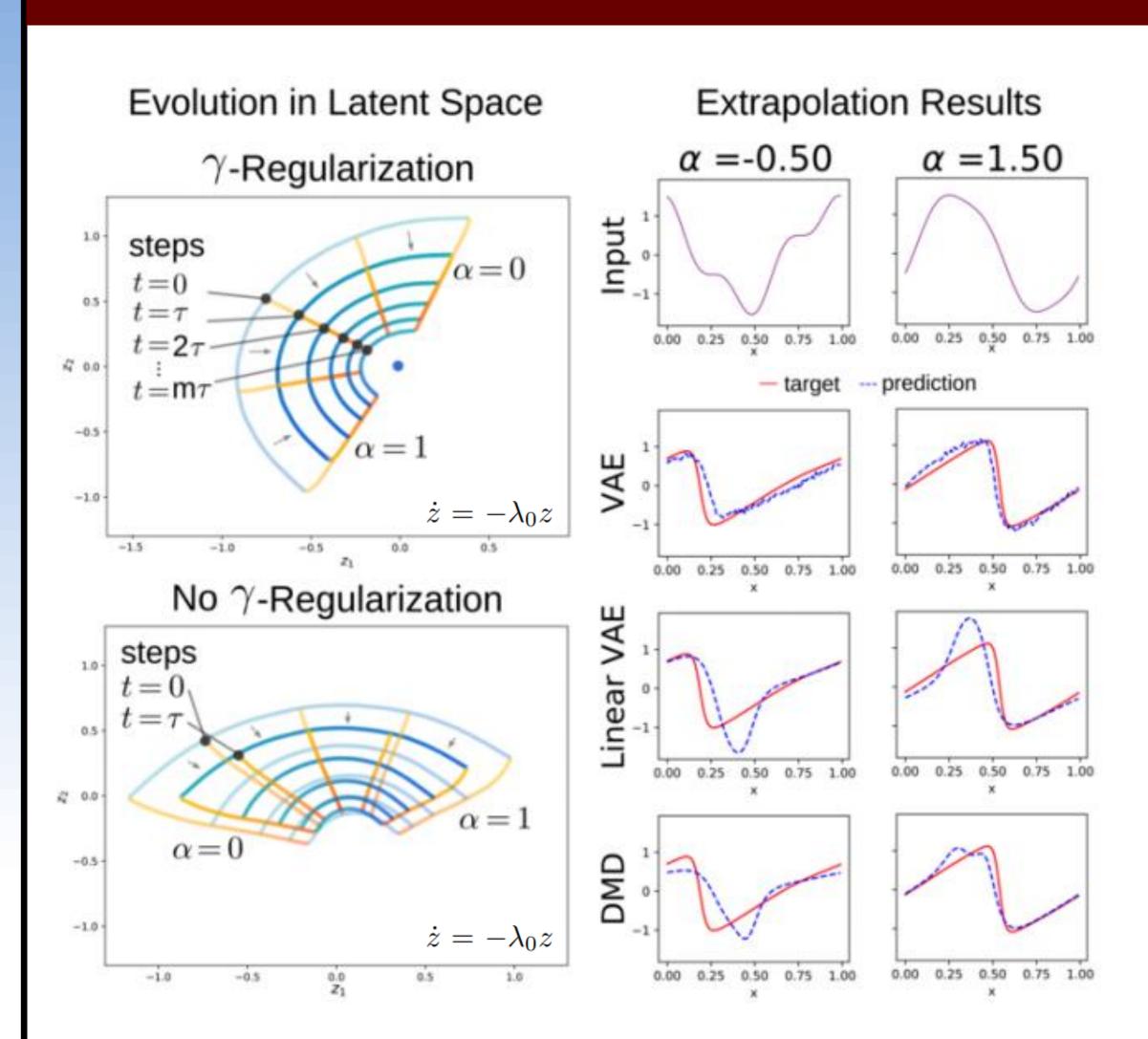


Nonlinear Dimension Reduction (Burgers PDE)



Variational Autoencoders for Learning R. Lopez, P. J. Atzberger, Dept. Math, Dept. Physics, UC Santa Barbara http://atzberger.org/

Nonlinear Dynamics Representations



Reconstruction Accuracy:

Method	Dim	0.25s	0.50s	0.75s	1.00s
VAE Nonlinear	2	4.44e-3	5.54e-3	6.30e-3	7.26e-3
VAE Linear	2	9.79e-2	1.21e-1	1.17e-1	1.23e-1
DMD	3	2.21e-1	1.79e-1	1.56e-1	1.49e-1
POD	3	3.24e-1	4.28e-1	4.87e-1	5.41e-1
Cole-Hopf-2	2	5.18e-1	4.17e-1	3.40e-1	1.33e-1
Cole-Hopf-4	4	5.78e-1	6.33e-2	9.14e-3	1.58e-3
Cole-Hopf-6	6	1.48e-1	2.55e-3	9.25e-5	7.47e-6

γ	0.00s	0.25s	0.50s	0.75s	1.00s
0.00	1.600e-01	6.906e-03	1.715e-01	3.566e-01	5.551e-01
0.50	1.383e-02	1.209e-02	1.013e-02	9.756e-03	1.070e-02
2.00	1.337e-02	1.303e-02	9.202e-03	8.878e-03	1.118e-02

β	0.00s	0.25s	0.50s	0.75s	1.00s
0.00	1.292e-02	1.173e-02	1.073e-02	1.062e-02	1.114e-02
0.50	1.190e-02	1.126e-02	1.072e-02	1.153e-02	1.274e-02
1.00	1.289e-02	1.193e-02	7.903e-03	7.883e-03	9.705e-03
4.00	1.836e-02	1.677e-02	8.987e-03	8.395e-03	8.894e-03

Methods:

Dynamic Mode Decomposition (DMD) Principle Orthogonal Decomposition (POD) Variational Autoencoder (VAE)

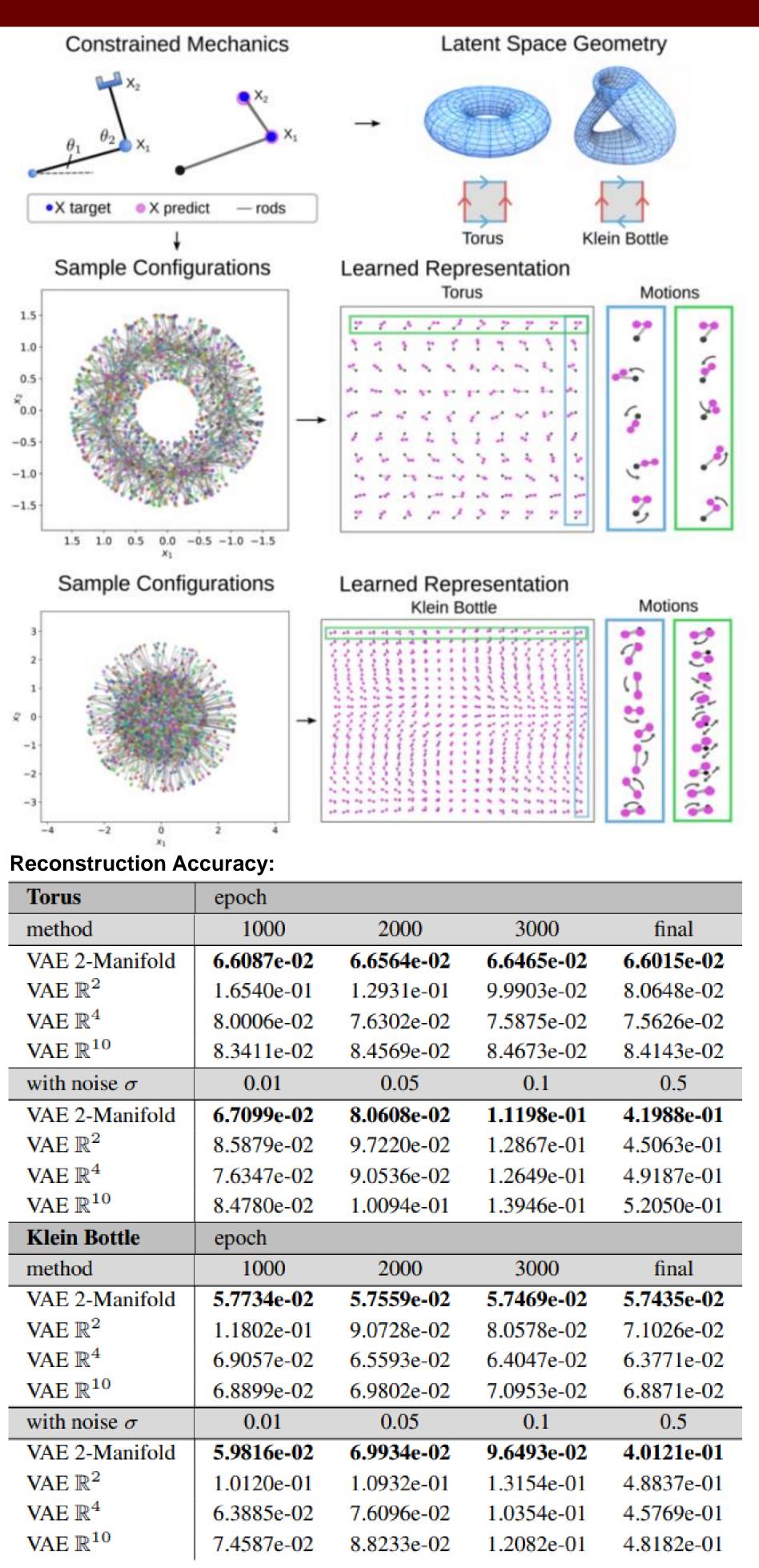
Nonlinear approximation vs linear in reconstruction accuracy.

Learned Representations: VAE gives semi-circle arcs in latent space.

Extrapolation: VAE prediction capabilities in parameters and in time.

 γ - **Reconstruction Regularization:** helps align for multi-step predictions.

Constrained **Mechanical Systems**



Learned Representations: Constrained mechanical systems (torus / klein bottle examples). Manifold Latent Space (prior): Enhances training efficiency, robustness to noise, accuracy.

Papers

Variational Autoencoders for Learning Nonlinear Dynamics of Physical Systems, R. Lopez, and P. J. Atzberger, http://arxiv.org/abs/2012.03448

Importance of the Mathematical Foundations of Machine Learning Methods for Scientific and Engineering Applications, P. J. Atzberger, http://arxiv.org/abs/1808.02213

> More Information: http://atzberger.org/