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We develop data-driven methods for incorporating physical 

information for priors to learn parsimonious representations of 

nonlinear systems arising from parameterized PDEs and 

mechanics. 

Our approach is based on Variational Autoencoders (VAEs) 

for learning from observations nonlinear state space models.  

We incorporate geometric and topological priors through 

general manifold latent space representations.

We give results for low dimensional representations for the 

nonlinear Burgers equation and constrained mechanical 

systems.

DOE ASCR PhILMs

DE-SC0019246

NSF Grant 

DMS - 1616353

Acknowledgements

Variational Autoencoders for Learning 

Nonlinear Dynamics of Physical Systems
R. Lopez, P. J. Atzberger, Dept. Math, Dept. Physics, UC Santa Barbara

Variational Autoencoders for

Dynamics

Latent Variable Representations

Geometric / Topologic Priors

Nonlinear Dimension

Reduction (Burgers PDE)

Nonlinear Dynamics

Representations

Constrained 

Mechanical Systems

Papers
Cole-Hopf (CH) Transformation to CH Reduction

(Fourier Transform)

truncate the series for 

Methods: 

Dynamic Mode Decomposition (DMD)

Principle Orthogonal Decomposition (POD)

Variational Autoencoder (VAE)

Nonlinear approximation vs linear in reconstruction accuracy.

Learned Representations: VAE gives semi-circle arcs in latent space.

Extrapolation: VAE prediction capabilities in parameters and in time.

- Reconstruction Regularization: helps align for multi-step predictions.

Variational Autoencoders for Learning Nonlinear Dynamics of Physical 

Systems, R. Lopez, and P. J. Atzberger, http://arxiv.org/abs/2012.03448

Importance of the Mathematical Foundations of Machine Learning Methods for 

Scientific and Engineering Applications, P. J. Atzberger, 

http://arxiv.org/abs/1808.02213

Reconstruction Accuracy:

Reconstruction Accuracy:

Variational Autoencoder (VAE) Framework:

Probabilistic Autoencoders (PAE): map X → x, encoder       , decoder 

Motivation: Maximum Likelihood Estimation (MLE) with ELBO approximation.

(loss function)

(ELBO + regularizations)

(reconstruction error)

(KL-divergence w/ prior)

(reconstruction regularization)

Deep Neural Networks (DNNs) trained within Stochastic Gradient Descent (SGD) in PyTorch.

Manifold Latent Spaces

(learnable encoder map class)

Point-cloud representation of manifold: (implicit map to manifold)

(see paper for details)

Learned Representations: Constrained mechanical systems (torus / klein bottle examples).

Manifold Latent Space (prior): Enhances training efficiency, robustness to noise, accuracy.
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