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Introduction

Tensor Networks (TNs) are factorizations of high-dimensional tensors into products of
low-order tensors. In the language of Neural Networks (NNs), some common TNs are
instances of Convolutional Arithmetic Circuits, Sum-Product Networks and recurrent
NNs (see [4]).
We study TNs as a tool for approximating functions. Our goal is to understand the
nature of functions that can be efficiently approximated with TNs – referred to as
TN-function class from now on. To that end, we (partially) answer two fundamental
questions.

(i) Relation to known function classes: are functions in classical smoothness spaces
also in the TN-function class?

(ii) Inherent structure: what can be said about the properties of TN-function classes?
Are these functions themselves necessarily smooth in a classical sense?

Tensor Networks

Multivariate Functions as TNs

Univariate Functions as TNs
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“Zooming-in” into different pieces of the function. Highly nonlinear feature maps.

Results

Notation We measure the complexity of a TN-approximation by the total number of weights in
the TN-network.

TNα :=“Functions in Lp that can be approximated by TNs with rate α > 0”

Wα :=“Fractional Sobolev space of smoothness α > 0”

Bα :=“Besov space with smoothness α > 0,

measured in the weaker Lτ -norm with 1/τ = α + 1/p”

Direct Results

� For certain network topologies, TNα is a Banach space.

� The relationship between TNα, Wα and Bα is depicted in Figure 1.

� Analytic functions can be approximated with exponential rate of convergence.

� Similar results for multivariate approximation but with interesting nuances.

Fig. 1: Direct Embeddings for TNα.

Inverse Results

� TNα is not embedded in Bµ for any µ > 0.

� TN complexity = depth d (resolution) + ranks ⇒ two extremal regimes: high depth +
small ranks (deep and narrow) OR small depth + high ranks (shallow and wide).

� Lack of regularity is due to high-depth-regime ⇒ if one restricts to 2nd regime only, TNα

has some (small) Besov regularity µ > 0, Figure 2.

Fig. 2: Inverse Embedding of restricted (TNR)α.

Summary

What we now understand

� TNs are highly efficient in representing exponentials, trigonometric polynomials,
piece-wise polynomials, multi-resolution analysis, as well as more exotic and
high-dimensional functions.

� TN-approximation can optimally replicate h-uniform, h-adaptive and hp-
uniform/adaptive approximation.

What we still do not understand

� For classical function spaces as above, the network topology does not play a
significant role. However, in“practice” it is known the network type is important
and the optimal network is problem-dependent.

� What are the functions that can be approximated with networks of a specific
topology? Do they have a simple description?

� Our results are restricted to tree tensor networks (without loops). Can we
characterize the effect of loops?

� What is the effect of (stronger) nonlinearities?

More details can be found in [1, 2, 3].
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