PennState



# Workshop on Mathematical Machine Learning and Application

#### December 14-16, 2020



Workshop Theme:

- Math for Machine Learning
- Machine Learning for Math

### Click on Q&A and type in all your questions during/after each talk

| CCMA | Donn | State |
|------|------|-------|
|      | Генн | Jaile |

## Deep Learning: Great success

## Computer vision

- Classification, detection, segmentation...
- Medical image processing,
- Face recognition,
- Reinforcement learning
  - AlphaGo,
  - Automated driving,

## Natural language processing

- Speech recognition,
- Machine translation,
- Scientific machine learning

# **Deep Learning and Mathematics**

Deep learning is "alchemy" ?



### Mathematics?

- Many areas of mathematics are applicable!
- One example area: numerical partial differential equations
  - Finite element method
  - Multigrid method

Example: Deep Learning and Numerical PDEs

Most commonly used tool in deep learning:

 $ReLU-DNN \equiv Linear Finite Element (LFE)!$ 

(He, Li, Xu and Zheng 2018)

Most commonly used ReLU-DNN:

 $ReLU-CNN \approx Multigrid$  (slightly modified) = MgNet

(He and Xu 2019)

Nonlinear space and super-approximation:

$$\inf_{v \in V_n^{ReLU}} \|u - v_n\|_{L^2([0,1]^d)} \approx \left(\inf_{v \in V_n^{LFE}} \|u - v_n\|_{L^2([0,1]^d)}\right)^d = \mathcal{O}(n^{-2} \log n)$$

(Siegel and Xu 2020)

# Topics covered in the workshop

- Approximation Theory
- 2 Optimization Algorithms
- Oimension Reduction, Data Clustering, and Manifold Learning
- Structure of Neuronal Network and Multiscale models
- PDE models for machine learning
- Machine learning for Operators and PDE models
- Application to Numerical PDEs, Control, and Solvers
- Graph Theory and Algorithms
- Inverse Problems and Bayesian Inference
- Imaging Reconstruction
- Random Matrix
- Quantum Computation

## Format of the workshop

### 24 Invited Talks

- 45 minutes for each presentation
- 15 minutes for Q&A and transition
- Poster presentations (Wednesday evening)
  - Brief introduction in the common zoom room
  - Discussions in individual zoom rooms

## Acknowledgement Local organizing committee



John Harlim

Juncai He

Qingguo Hong

Jonathan Siegel

Jinchao Xu

and many of my Penn State colleagues who graciously agreed to chair sessions Sponsors

- Penn State Institute for Computational and Data Science (ICDS)
- NSF DMS-2020623 but not used due to the online format

Technical support

• Penn State IT for webinar sessions.

Thank you for your participation!